Severe bone defects pose a formidable clinical challenge in orthopedics, urgently demanding the development of advanced biomaterials to restore structural and functional integrity. While current regenerative materials, such as collagen-containing products, demonstrate a certain degree of biocompatibility, they are still hampered by limitations that include poor mechanical performance, restricted barrier effects, and arduous preparation methods. Here, we report a rapid-curing methodology to engineer recombinant resilin bioshield with tunable modulus, superior bioactivity, and rapid assembly kinetics. The resilin bioshield is rapidly formed within minutes via a tyrosine-mediated photo-crosslinking strategy, achieving spatially programmable assembly. Enzymatic integration of alkaline phosphatase into the resilin matrix drives in situ mineralization, yielding densely packed hydroxyapatite (HAP) nanocrystals. Remarkably, this process enables controlled modulus tuning of the bioshield across three orders of magnitude, achieving an exceptional maximum modulus of 145 MPa while retaining excellent flexibility, thus surpassing conventional guided bone regeneration materials. Beyond its mechanical superiority, the mineralized resilin bioshield not only directs cellular behavior by enhancing adhesion and spreading but also robustly drives the osteogenic differentiation of mesenchymal stem cells, thereby accelerating functional bone regeneration. As a result, our work provides an alternative approach for creating high-performance barrier membranes for guided bone regeneration.
Lv, Z. H.; Hu, T. T.; Bian, Y. X.; Wang, G. Y.; Wu, Z. K.; Li, H.; Liu, X. Y.; Yang, S. Q.; Tan, C. L.; Liang, R. Z. et al. A MgFe-LDH nanosheet-incorporated smart thermo-responsive hydrogel with controllable growth factor releasing capability for bone regeneration. Adv. Mater. 2023, 35, 2206545.
Zhang, J.; Tong, D. M.; Song, H. H.; Ruan, R. J.; Sun, Y. F.; Lin, Y. D.; Wang, J.; Hou, L. X.; Dai, J. Y.; Ding, J. X. et al. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration. Adv. Mater. 2022, 34, 2202044.
Li, Z. X.; He, D. Q.; Guo, B. W.; Wang, Z. K.; Yu, H. J.; Wang, Y.; Jin, S. S.; Yu, M.; Zhu, L. S.; Chen, L. Y. et al. Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat. Commun. 2023, 14, 6963.
Mao, Z. N.; Bi, X. W.; Yu, C. H.; Chen, L.; Shen, J.; Huang, Y. C.; Wu, Z. H.; Qi, H.; Guan, J.; Shu, X. et al. Mechanically robust and personalized silk fibroin-magnesium composite scaffolds with water-responsive shape-memory for irregular bone regeneration. Nat. Commun. 2024, 15, 4160.
Yu, T. T.; Wang, J. W.; Zhou, Y. S.; Ma, C.; Bai, R. S.; Huang, C. C.; Wang, S. D.; Liu, K.; Han, B. Harnessing engineered extracellular vesicles from mesenchymal stem cells as therapeutic scaffolds for bone-related diseases. Adv. Funct. Mater. 2024, 34, 2402861.
Wu, S. Y.; Luo, S. L.; Cen, Z. H.; Li, Q. Q.; Li, L. W.; Li, W. R.; Huang, Z. K.; He, W. Y.; Liang, G. B.; Wu, D. C. et al. All-in-one porous membrane enables full protection in guided bone regeneration. Nat. Commun. 2024, 15, 119.
Arvidson, K.; Abdallah, B. M.; Applegate, L. A.; Baldini, N.; Cenni, E.; Gomez-Barrena, E.; Granchi, D.; Kassem, M.; Konttinen, Y. T.; Mustafa, K. et al. Bone regeneration and stem cells. J. Cell. Mol. Med. 2011, 15, 718–746.
Retzepi, M.; Donos, N. Guided Bone Regeneration: Biological principle and therapeutic applications. Clin. Oral Implants Res. 2010, 21, 567–576.
Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017, 125, 315–337.
Jiang, S. J.; Wang, M. H.; Wang, Z. Y.; Gao, H. L.; Chen, S. M.; Cong, Y. H.; Yang, L.; Wen, S. M.; Cheng, D. D.; He, J. C. et al. Radially porous nanocomposite scaffolds with enhanced capability for guiding bone regeneration in vivo. Adv. Funct. Mater. 2022, 32, 2110931.
Zhang, K. R.; Gao, H. L.; Pan, X. F.; Zhou, P.; Xing, X.; Xu, R.; Pan, Z.; Wang, S.; Zhu, Y. M.; Hu, B. et al. Multifunctional bilayer nanocomposite guided bone regeneration membrane. Matter 2019, 1, 770–781.
Xie, Y.; Li, S. H.; Zhang, T. X.; Wang, C.; Cai, X. X. Titanium mesh for bone augmentation in oral implantology: Current application and progress. Int. J. Oral Sci. 2020, 12, 37.
Kim, K.; Su, Y. C.; Kucine, A. J.; Cheng, K.; Zhu, D. H. Guided bone regeneration using barrier membrane in dental applications. ACS Biomater. Sci. Eng. 2023, 9, 5457–5478.
Schaeffer, C. V.; Stranix, J. T. Tackling bone loss of the lower extremity: Vascularized bone grafting. Plast. Aesthet. Res. 2022, 9, 27.
Jung, U. W.; Unursaikhan, O.; Park, J. Y.; Lee, J. S.; Otgonbold, J.; Choi, S. H. Tenting effect of the elevated sinus membrane over an implant with adjunctive use of a hydroxyapatite-powdered collagen membrane in rabbits. Clin. Oral Implants Res. 2015, 26, 663–670.
Peng, F. L.; Zhang, X. L.; Wang, Y. L.; Zhao, R.; Cao, Z. W.; Chen, S. Y.; Ruan, Y. X.; Wu, J. J.; Song, T. X.; Qiu, Z. Y. et al. Guided bone regeneration in long-bone defect with a bilayer mineralized collagen membrane. Collagen Leather 2023, 5, 36.
Wu, Y.; Chen, S. C.; Luo, P.; Deng, S. D.; Shan, Z. J.; Fang, J. H.; Liu, X. C.; Xie, J. X.; Liu, R. H.; Wu, S. Y. et al. Optimizing the bio-degradability and biocompatibility of a biogenic collagen membrane through cross-linking and zinc-doped hydroxyapatite. Acta Biomater. 2022, 143, 159–172.
Ghanaati, S. Non-cross-linked porcine-based collagen I-III membranes do not require high vascularization rates for their integration within the implantation bed: A paradigm shift. Acta Biomater. 2012, 8, 3061–3072.
Qin, D. W.; Wang, M. Y.; Cheng, W. H.; Chen, J.; Wang, F.; Sun, J.; Ma, C.; Zhang, Y. Y.; Zhang, H. J.; Li, H. R. et al. Spidroin-mimetic engineered protein fibers with high toughness and minimized batch-to-batch variations through β-sheets Co-assembly. Angew. Chem., Int. Ed. 2024, 63, e202400595.
Miserez, A.; Yu, J.; Mohammadi, P. Protein-based biological materials: Molecular design and artificial production. Chem. Rev. 2023, 123, 2049–2111.
Jiang, B. J.; Tan, S. Y.; Fang, S. Y.; Feng, X. H.; Park, B. M.; Fok, H. K. F.; Yang, Z. G.; Wang, R.; Kou, S. Z.; Wu, A. R. et al. Designed multifunctional spider silk enabled by genetically encoded click chemistry. Adv. Funct. Mater. 2023, 33, 2304143.
Zhou, Y. S.; Chang, R.; Yang, Z. Y.; Guo, Q.; Wang, M. Y.; Jia, B.; Li, B.; Deng, B. D.; Ren, Y. B.; Zhu, H. X. et al. Dynamic peptide nanoframework-guided protein coassembly: Advancing adhesion performance with hierarchical structures. J. Am. Chem. Soc. 2025, 147, 2335–2349.
Li, Y. X.; Li, J. J.; Sun, J.; He, H. N.; Li, B.; Ma, C.; Liu, K.; Zhang, H. J. Bioinspired and mechanically strong fibers based on engineered non-spider chimeric proteins. Angew. Chem., Int. Ed. 2020, 59, 8148–8152.
Wang, M. Y.; Yang, Z. Y.; Jia, B.; Qin, D. W.; Liu, Y. W.; Wang, F.; Sun, J.; Zhang, H. J.; Li, J. J.; Liu, K. Modular protein fibers with outstanding high-strength and acid-resistance performance mediated by copper ion binding and imine networking. Adv. Mater. 2024, 36, 2400544.
Zhang, X.; Li, J. J.; Ma, C.; Zhang, H. J.; Liu, K. Biomimetic structural proteins: Modular assembly and high mechanical performance. Acc. Chem. Res. 2023, 56, 2664–2675.
Yang, Z. G.; Fok, H. K. F.; Luo, J. R.; Yang, Y.; Wang, R.; Huang, X. Y.; Sun, F. B12-induced reassembly of split photoreceptor protein enables photoresponsive hydrogels with tunable mechanics. Sci. Adv. , 2022, 8, eabm5482.
Renner, J. N.; Cherry, K. M.; Su, R. S. C.; Liu, J. C. Characterization of resilin-based materials for tissue engineering applications. Biomacromolecules 2012, 13, 3678–3685.
Sun, J.; He, H. N.; Zhao, K. L.; Cheng, W. H.; Li, Y. X.; Zhang, P.; Wan, S. K.; Liu, Y. W.; Wang, M. Y.; Li, M. et al. Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry. Nat. Commun. 2023, 14, 5348.
Su, J. J. ; Liu, B. M.; He, H. N.; Ma, C.; Wei, B.; Li, M.; Li, J. J.; Wang, F.; Sun, J.; Liu, K. et al. Engineering high strength and super-toughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair. Adv. Mater. 2022, 34, 2200842.
Lv, S. S.; Dudek, D. M.; Cao, Y.; Balamurali, M. M.; Gosline, J.; Li, H. B. Designed biomaterials to mimic the mechanical properties of muscles. Nature 2010, 465, 69–73.
Balu, R.; Dutta, N. K.; Dutta, A. K.; Choudhury, N. R. Resilin-mimetics as a smart biomaterial platform for biomedical applications. Nat. Commun. 2021, 12, 149.
Andersen, S. O. The cross-links in resilin identified as dityrosine and trityrosine. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1964, 93, 213–215.
Mikael, P. E.; Udangawa, R.; Sorci, M.; Cress, B.; Shtein, Z.; Belfort, G.; Shoseyov, O.; Dordick, J. S.; Linhardt, R. J. Production and characterization of recombinant collagen-binding resilin nanocomposite for regenerative medicine applications. Regen. Eng. Transl. Med. 2019, 5, 362–372.
Li, L. Q.; Mahara, A.; Tong, Z. X.; Levenson, E. A.; McGann, C. L.; Jia, X. Q.; Yamaoka, T.; Kiick, K. L. Recombinant resilin-based bioelastomers for regenerative medicine applications. Adv. Healthc. Mater. 2016, 5, 266–275.
Li, L. Q.; Tong, Z. X.; Jia, X. Q.; Kiick, K. L. Resilin-like polypeptide hydrogels engineered for versatile biological function. Soft Matter 2013, 9, 665–673.
McGann, C. L.; Levenson, E. A.; Kiick, K. L. Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromol. Chem. Phys. 2013, 214, 203–213.
Rauner, N.; Meuris, M.; Zoric, M.; Tiller, J. C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 2017, 543, 407–410.
Chen, G. D.; Liang, X. Y.; Zhang, P.; Lin, S. T.; Cai, C. C.; Yu, Z. Y.; Liu, J. Bioinspired 3D printing of functional materials by harnessing enzyme-induced biomineralization. Adv. Funct. Mater. 2022, 32, 2113262.
Ma, C.; Sun, J.; Li, B.; Feng, Y.; Sun, Y.; Xiang, L.; Wu, B. H.; Xiao, L. L.; Liu, B. M.; Petrovskii, V. S. et al. Ultra-strong bio-glue from genetically engineered polypeptides. Nat. Commun. 2021, 12, 3613.
Ding, Y.; Li, Y.; Qin, M.; Cao, Y.; Wang, W. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability. Langmuir 2013, 29, 13299–13306.
Zhou, Y. S.; Deng, J. J.; Zhang, Y.; Li, C.; Wei, Z.; Shen, J. L.; Li, J. J.; Wang, F.; Han, B.; Chen, D. et al. Engineering DNA-guided hydroxyapatite bulk materials with high stiffness and outstanding antimicrobial ability for dental inlay applications. Adv. Mater. 2022, 34, 2202180.
Shao, C. Y.; Jin, B.; Mu, Z.; Lu, H.; Zhao, Y. Q.; Wu, Z. F.; Yan, L. M.; Zhang, Z. S.; Zhou, Y. C.; Pan, H. H. et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Sci. Adv., 2019, 5, eaaw9569.
Mohd Hidzir, N.; Hill, D. J. T.; Taran, E.; Martin, D.; Grøndahl, L. Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes. Polymer 2013, 54, 6536–6546.
Choy, S.; Lam, D. V.; Lee, S. M.; Hwang, D. S. Prolonged biodegradation and improved mechanical stability of collagen via vapor-phase Ti stitching for long-term tissue regeneration. ACS Appl. Mater. Interfaces 2019, 11, 38440–38447.
Fang, J. H.; Liu, H. Q.; Qiao, W.; Xu, T. P.; Yang, Y. H.; Xie, H. Z.; Lam, C. H.; Yeung, K. W. K.; Zhao, X. Biomimicking leaf-vein engraved soft and elastic membrane promotes vascular reconstruction. Adv. Healthc. Mater. 2023, 12, 2201220.
Yu, S.; Shi, J.; Liu, Y. T.; Si, J. W.; Yuan, Y.; Liu, C. S. A mechanically robust and flexible PEGylated poly(glycerol sebacate)/β-TCP nanoparticle composite membrane for guided bone regeneration. J. Mater. Chem. B 2019, 7, 3279–3290.
Zhu, Y. M.; Zhou, J. P.; Dai, B. Y.; Liu, W.; Wang, J. P.; Li, Q.; Wang, J.; Zhao, L.; Ngai, T. A bilayer membrane doped with struvite nanowires for guided bone regeneration. Adv. Healthc. Mater. 2022, 11, 2201679.
Discher, D. E.; Janmey, P.; Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143.
Hotchkiss, K. M.; Reddy, G. B.; Hyzy, S. L.; Schwartz, Z.; Boyan, B. D.; Olivares-Navarrete, R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016, 31, 425–434.
Xia, J.; Yuan, Y.; Wu, H. Y.; Huang, Y. T.; Weitz, D. A. Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells. Biomaterials 2020, 248, 120014.
Jo, Y. K.; Choi, B. H.; Kim, C. S.; Cha, H. J. Diatom-inspired silica nanostructure coatings with controllable microroughness using an engineered mussel protein glue to accelerate bone growth on titanium-based implants. Adv. Mater. 2017, 29, 1704906.
Zhong, Z. Y.; Wu, X. D.; Wang, Y. F.; Li, M. D.; Li, Y.; Liu, X. L.; Zhang, X.; Lan, Z. Y.; Wang, J. L.; Du, Y. Y. et al. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact. Mater. 2022, 10, 195–206.
Li, J.; Yan, J. F.; Wan, Q. Q.; Shen, M. J.; Ma, Y. X.; Gu, J. T.; Gao, P.; Tang, X. Y.; Yu, F.; Chen, J. H. et al. Matrix stiffening by self-mineralizable guided bone regeneration. Acta Biomater. 2021, 125, 112–125.