PDF (17.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

TiO2 encapsulated free-standing SbVO4 nanotube arrays: As durable anode materials for lithium/sodium-ion batteries

Zhaomin Wang1,2Chunli Wang1 ()Dongming Yin1Limin Wang1Yong Cheng1 ()
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of materials science and engineering, Changchun University of Science and Technology, Changchun 130022, China
Show Author Information

Graphical Abstract

View original image Download original image
We designed a sort of three-dimensional (3D) TiO2@SbVO4@TiO2 nanotube arrays integrated additive-free electrode via a simple liquid-phase synthesis reaction and annealing treatment. The TiO2@SbVO4@TiO2 composite exhibited outstanding electrochemical lithium/sodium storage properties due to the ingenious structure and better electrical conductivity.

Abstract

Antimony anode has attracted increasing advertence in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) with its suitable voltage platform and high theoretical capacity. Nevertheless, volume expansion and exfoliation severely affect the electrochemical performance. Herein, a performance-oriented electrode structure is proposed, which is a sort of three-dimensional (3D) TiO2@SbVO4@TiO2 nanotube arrays integrated additive-free electrode with high orderliness, exceptional para-vertical alignment, and appropriate interval spacing. Benefiting from these structural merits, the 3D TiO2@SbVO4@TiO2 nanotube-arrays integrated anode employed for LIBs supplies an invertible specific capacity as high as 448 mAh·g−1 at 2 A·g−1 after 1890 cycles and an exceptional high-rate capacity of 356 mAh·g−1 at 10 A·g−1. Furthermore, as an anode for SIBs, it can also reveal an invertible specific capacity of 288 mAh·g−1 at 1 A·g−1 after 1000 cycles and brilliant rate performance with a specific capacity of 160 mAh·g−1 at 10 A·g−1. These excellent electrochemical properties lay the foundation for more applications of 3D nanotube arrays integrated additive-free electrodes in energy storage devices.

Electronic Supplementary Material

Download File(s)
7418_ESM.pdf (1.7 MB)

References

[1]

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

[2]

Cheng, Y.; Chen, B. B.; Chang, L. M.; Zhang, D. Y.; Wang, C. L.; Wang, S. H.; Nie, P.; Wang, L. M. Electrochemical activation of oxygen atom of SnO2 to expedite efficient conversion reaction for alkaline-ion (Li+/Na+/K+) storages. Nano Res. 2023, 16, 1642–1650.

[3]

Liang, L. W.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Sun, J. F.; Liu, Y.; Wang, S. G.; Yuan, C. Z. In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1802847.

[4]

Shen, Y. B.; Wu, Y. Q.; Zhang, D. Y.; Liang, Y.; Yin, D. M.; Wang, L. M.; Wang, L. C.; Cao, J. C.; Cheng, Y. Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating. Nano Res. 2023, 16, 5973–5982.

[5]

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

[6]

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

[7]

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

[8]

Wu, N. T.; He, W. J.; Shi, S. C.; Yuan, X. K.; Li, J.; Cao, J. L.; Yuan, C. Z.; Liu, X. M. Bamboo fiber-derived carbon support for the immobilization of Pt nanoparticles to enhance hydrogen evolution reaction. J. Colloid Interface Sci. 2025, 684, 658–667.

[9]
Wu, N. T.; Shen, J. K.; Zhou, X. L.; Li, S. Y.; Li, J.; Liu, G. L.; Guo, D. L.; Deng, W. T.; Yuan, C. Z.; Liu, X. M. et al. Constructing iron vacancies in thiospinel FeIn2S4 to modulate Fe d-band center and accelerate sodiation kinetics enabling high-rate and durable sodium storage. Adv. Energy Mater., in press, DOI: 10.1002/aenm.202405729.
[10]

Wu, N. T.; Zhao, Z. B.; Zhang, Y. M.; Hua, R.; Li, J.; Liu, G. L.; Guo, D. L.; Zhao, J. G.; Cao, A.; Sun, G. et al. Revealing the fast reaction kinetics and interfacial behaviors of CuFeS2 hollow nanorods for durable and high-rate sodium storage. J. Colloid Interface Sci. 2025, 679, 990–1000.

[11]

Li, J.; Yang, J. Y.; Wang, J. T.; Lu, S. G. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019, 38, 199–205.

[12]

Luo, W.; Gaumet, J. J.; Mai, L. Q. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: Synthesis, construction and application. Rare Met. 2017, 36, 321–338.

[13]

Dong, Y. C.; Yang, S. L.; Zhang, Z. Y.; Lee, J. M.; Zapien, J. A. Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials. Nanoscale 2018, 10, 3159–3165.

[14]

Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.

[15]

Wang, B. P.; Lv, R.; Lan, D. S. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019, 38, 996–1002.

[16]

An, W. L.; Gao, B. A.; Mei, S. X.; Xiang, B.; Fu, J. J.; Wang, L.; Zhang, Q. B.; Chu, P. K.; Huo, K. F. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447.

[17]

Ma, Y.; Ma, Y. J.; Bresser, D.; Ji, Y. C.; Geiger, D.; Kaiser, U.; Streb, C.; Varzi, A.; Passerini, S. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220–7231.

[18]

Mahmood, N.; Hou, Y. L. Electrode nanostructures in lithium-based batteries. Adv. Sci. 2014, 1, 1400012.

[19]

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

[20]

Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034–2042.

[21]

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

[22]

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

[23]

Liu, X. Y.; Tian, Y.; Cao, X. Q.; Li, X. R.; Le, Z. Y.; Zhang, D. Q.; Li, X. Y.; Nie, P.; Li, H. X. Aerosol-assisted synthesis of spherical Sb/C composites as advanced anodes for lithium ion and sodium ion batteries. ACS Appl. Energy Mater. 2018, 1, 6381–6387.

[24]

Hu, L. Y.; Zhu, X. S.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Bao, J. C. A chemically coupled antimony/multilayer graphene hybrid as a high-performance anode for sodium-ion batteries. Chem. Mater. 2015, 27, 8138–8145.

[25]

Ko, Y. N.; Kang, Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 2014, 50, 12322–12324.

[26]

Ji, L. W.; Zhou, W. D.; Chabot, V.; Yu, A. P.; Xiao, X. C. Reduced graphene oxide/tin-antimony nanocomposites as anode materials for advanced sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 24895–24901.

[27]

Cheng, N.; Zhao, J. G.; Fan, L.; Liu, Z. M.; Chen, S. H.; Ding, H. B.; Yu, X. Z.; Liu, Z. G.; Lu, B. G. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 2019, 55, 12511–12514.

[28]

Morcrette, M.; Larcher, D.; Tarascon, J. M.; Edström, K.; Vaughey, J. T.; Thackeray, M. M. Influence of electrode microstructure on the reactivity of Cu2Sb with lithium. Electrochim. Acta 2007, 52, 5339–5345.

[29]

An, Y. L.; Tian, Y.; Ci, L. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018, 12, 12932–12940.

[30]

Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.

[31]

Schulze, M. C.; Belson, R. M.; Kraynak, L. A.; Prieto, A. L. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Storage Mater. 2020, 25, 572–584.

[32]

Liang, L. Y.; Xu, Y.; Wen, L. Y.; Li, Y. L.; Zhou, M.; Wang, C. L.; Zhao, H. P.; Kaiser, U.; Lei, Y. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Res. 2017, 10, 3189–3201.

[33]

Lu, Y. Y.; Zhang, N.; Jiang, S.; Zhang, Y. D.; Zhou, M.; Tao, Z. L.; Archer, L. A.; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture. Nano Lett. 2017, 17, 3668–3674.

[34]

Li, X. Y.; Sun, M. L.; Ni, J. F.; Li, L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv. Energy Mater. 2019, 9, 1901096.

[35]

Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.

[36]

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

[37]

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[38]

Wu, L.; Zheng, J.; Wang, L.; Xiong, X. H.; Shao, Y. Y.; Wang, G.; Wang, J. H.; Zhong, S. K.; Wu, M. H. PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 811–815.

[39]

Zhang, H.; Qian, J. H.; Zhang, J.; Xu, J. S. Preparation of TiO2@Sn(Sb)O2 core–shell composites and their applications for electrocatalytic degradation of methylene blue. J. Mater. Sci.: Mater. Electron. 2021, 32, 2026–2040.

[40]

Pan, J.; Zhang, Y. C.; Li, L. L.; Cheng, Z. J.; Li, Y. L.; Yang, X. F.; Yang, J.; Qian, Y. T. Polyanions enhance conversion reactions for lithium/sodium-ion batteries: The case of SbVO4 nanoparticles on reduced graphene oxide. Small Methods 2019, 3, 1900231.

[41]

Liu, X. M.; Yang, X. J.; Li, F.; Li, T. H.; Cao, W. SbVO4 nanoparticles synthesized via three facile one-pot methods: Controllable morphologies and superhydrophobic coatings. Dalton Trans. 2017, 46, 12988–12995.

[42]

Madian, M.; Klose, M.; Jaumann, T.; Gebert, A.; Oswald, S.; Ismail, N.; Eychmüller, A.; Eckert, J.; Giebeler, L. Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries. J. Mater. Chem. A 2016, 4, 5542–5552.

[43]

Tian, Q. H.; Zhang, Z. X.; Yang, L.; Hirano, S. I. Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries. J. Power Sources 2014, 253, 9–16.

[44]

Yi, Z.; Han, Q. G.; Ju, S. S.; Wu, Y. M.; Cheng, Y.; Wang, L. M. Fabrication of one-dimensional Sb@TiO2 composites as anode materials for lithium-ion batteries. J. Electrochem. Soc. 2016, 163, A2641–A2646.

[45]

Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802–1809.

[46]

Li, W.; Wang, K. L.; Cheng, S. J.; Jiang, K. An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 2019, 9, 1900993.

[47]

Wang, J. X.; Zhang, G. B.; Liu, Z. M.; Li, H. K.; Liu, Y.; Wang, Z. X.; Li, X. H.; Shih, K.; Mai, L. Q. Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 2018, 44, 272–278.

[48]

Jiao, X.; Zeng, T. B.; Ji, P. H.; Peng, Q. M.; Shang, B.; Hu, X. B. Sb embedded TiO2/C spheres as high cyclability anode for lithium ion battery. J. Alloys Compd. 2018, 739, 1–8.

[49]

Guo, M. Q.; Chen, J. J.; Meng, W. J.; Cheng, L. Y.; Bai, Z. C.; Wang, Z. H.; Yang, F. Q. Sb nanocrystal-anchored hollow carbon microspheres for high-capacity and high-cycling performance lithium-ion batteries. Nanotechnology 2020, 31, 135404.

[50]

Cui, C.; Zhang, R. P.; Fu, C. K.; Xiao, R.; Li, R. L.; Ma, Y. L.; Wang, J. J.; Gao, Y. Z.; Yin, G. P.; Zuo, P. J. Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chem. Eng. J. 2022, 433, 133570.

[51]

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

[52]

Wang, A. N.; Li, J.; Yi, M. Y.; Xie, Y. Y.; Chang, S. L.; Shi, H. B.; Zhang, L. Y.; Bai, M. H.; Zhou, Y. G.; Lai, Y. Q. et al. Stable all-solid-state lithium metal batteries enabled by ultrathin LiF/Li3Sb hybrid interface layer. Energy Storage Mater. 2022, 49, 246–254.

Nano Research
Article number: 94907418
Cite this article:
Wang Z, Wang C, Yin D, et al. TiO2 encapsulated free-standing SbVO4 nanotube arrays: As durable anode materials for lithium/sodium-ion batteries. Nano Research, 2025, 18(5): 94907418. https://doi.org/10.26599/NR.2025.94907418
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return