Antimony anode has attracted increasing advertence in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) with its suitable voltage platform and high theoretical capacity. Nevertheless, volume expansion and exfoliation severely affect the electrochemical performance. Herein, a performance-oriented electrode structure is proposed, which is a sort of three-dimensional (3D) TiO2@SbVO4@TiO2 nanotube arrays integrated additive-free electrode with high orderliness, exceptional para-vertical alignment, and appropriate interval spacing. Benefiting from these structural merits, the 3D TiO2@SbVO4@TiO2 nanotube-arrays integrated anode employed for LIBs supplies an invertible specific capacity as high as 448 mAh·g−1 at 2 A·g−1 after 1890 cycles and an exceptional high-rate capacity of 356 mAh·g−1 at 10 A·g−1. Furthermore, as an anode for SIBs, it can also reveal an invertible specific capacity of 288 mAh·g−1 at 1 A·g−1 after 1000 cycles and brilliant rate performance with a specific capacity of 160 mAh·g−1 at 10 A·g−1. These excellent electrochemical properties lay the foundation for more applications of 3D nanotube arrays integrated additive-free electrodes in energy storage devices.
Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.
Cheng, Y.; Chen, B. B.; Chang, L. M.; Zhang, D. Y.; Wang, C. L.; Wang, S. H.; Nie, P.; Wang, L. M. Electrochemical activation of oxygen atom of SnO2 to expedite efficient conversion reaction for alkaline-ion (Li+/Na+/K+) storages. Nano Res. 2023, 16, 1642–1650.
Liang, L. W.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Sun, J. F.; Liu, Y.; Wang, S. G.; Yuan, C. Z. In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1802847.
Shen, Y. B.; Wu, Y. Q.; Zhang, D. Y.; Liang, Y.; Yin, D. M.; Wang, L. M.; Wang, L. C.; Cao, J. C.; Cheng, Y. Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating. Nano Res. 2023, 16, 5973–5982.
Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.
Wu, N. T.; He, W. J.; Shi, S. C.; Yuan, X. K.; Li, J.; Cao, J. L.; Yuan, C. Z.; Liu, X. M. Bamboo fiber-derived carbon support for the immobilization of Pt nanoparticles to enhance hydrogen evolution reaction. J. Colloid Interface Sci. 2025, 684, 658–667.
Wu, N. T.; Zhao, Z. B.; Zhang, Y. M.; Hua, R.; Li, J.; Liu, G. L.; Guo, D. L.; Zhao, J. G.; Cao, A.; Sun, G. et al. Revealing the fast reaction kinetics and interfacial behaviors of CuFeS2 hollow nanorods for durable and high-rate sodium storage. J. Colloid Interface Sci. 2025, 679, 990–1000.
Li, J.; Yang, J. Y.; Wang, J. T.; Lu, S. G. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019, 38, 199–205.
Luo, W.; Gaumet, J. J.; Mai, L. Q. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: Synthesis, construction and application. Rare Met. 2017, 36, 321–338.
Dong, Y. C.; Yang, S. L.; Zhang, Z. Y.; Lee, J. M.; Zapien, J. A. Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials. Nanoscale 2018, 10, 3159–3165.
Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.
Wang, B. P.; Lv, R.; Lan, D. S. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019, 38, 996–1002.
An, W. L.; Gao, B. A.; Mei, S. X.; Xiang, B.; Fu, J. J.; Wang, L.; Zhang, Q. B.; Chu, P. K.; Huo, K. F. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447.
Ma, Y.; Ma, Y. J.; Bresser, D.; Ji, Y. C.; Geiger, D.; Kaiser, U.; Streb, C.; Varzi, A.; Passerini, S. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220–7231.
Mahmood, N.; Hou, Y. L. Electrode nanostructures in lithium-based batteries. Adv. Sci. 2014, 1, 1400012.
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.
Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034–2042.
Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.
Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.
Liu, X. Y.; Tian, Y.; Cao, X. Q.; Li, X. R.; Le, Z. Y.; Zhang, D. Q.; Li, X. Y.; Nie, P.; Li, H. X. Aerosol-assisted synthesis of spherical Sb/C composites as advanced anodes for lithium ion and sodium ion batteries. ACS Appl. Energy Mater. 2018, 1, 6381–6387.
Hu, L. Y.; Zhu, X. S.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Bao, J. C. A chemically coupled antimony/multilayer graphene hybrid as a high-performance anode for sodium-ion batteries. Chem. Mater. 2015, 27, 8138–8145.
Ko, Y. N.; Kang, Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 2014, 50, 12322–12324.
Ji, L. W.; Zhou, W. D.; Chabot, V.; Yu, A. P.; Xiao, X. C. Reduced graphene oxide/tin-antimony nanocomposites as anode materials for advanced sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 24895–24901.
Cheng, N.; Zhao, J. G.; Fan, L.; Liu, Z. M.; Chen, S. H.; Ding, H. B.; Yu, X. Z.; Liu, Z. G.; Lu, B. G. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 2019, 55, 12511–12514.
Morcrette, M.; Larcher, D.; Tarascon, J. M.; Edström, K.; Vaughey, J. T.; Thackeray, M. M. Influence of electrode microstructure on the reactivity of Cu2Sb with lithium. Electrochim. Acta 2007, 52, 5339–5345.
An, Y. L.; Tian, Y.; Ci, L. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018, 12, 12932–12940.
Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.
Schulze, M. C.; Belson, R. M.; Kraynak, L. A.; Prieto, A. L. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Storage Mater. 2020, 25, 572–584.
Liang, L. Y.; Xu, Y.; Wen, L. Y.; Li, Y. L.; Zhou, M.; Wang, C. L.; Zhao, H. P.; Kaiser, U.; Lei, Y. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Res. 2017, 10, 3189–3201.
Lu, Y. Y.; Zhang, N.; Jiang, S.; Zhang, Y. D.; Zhou, M.; Tao, Z. L.; Archer, L. A.; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture. Nano Lett. 2017, 17, 3668–3674.
Li, X. Y.; Sun, M. L.; Ni, J. F.; Li, L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv. Energy Mater. 2019, 9, 1901096.
Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.
Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.
Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.
Wu, L.; Zheng, J.; Wang, L.; Xiong, X. H.; Shao, Y. Y.; Wang, G.; Wang, J. H.; Zhong, S. K.; Wu, M. H. PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 811–815.
Zhang, H.; Qian, J. H.; Zhang, J.; Xu, J. S. Preparation of TiO2@Sn(Sb)O2 core–shell composites and their applications for electrocatalytic degradation of methylene blue. J. Mater. Sci.: Mater. Electron. 2021, 32, 2026–2040.
Pan, J.; Zhang, Y. C.; Li, L. L.; Cheng, Z. J.; Li, Y. L.; Yang, X. F.; Yang, J.; Qian, Y. T. Polyanions enhance conversion reactions for lithium/sodium-ion batteries: The case of SbVO4 nanoparticles on reduced graphene oxide. Small Methods 2019, 3, 1900231.
Liu, X. M.; Yang, X. J.; Li, F.; Li, T. H.; Cao, W. SbVO4 nanoparticles synthesized via three facile one-pot methods: Controllable morphologies and superhydrophobic coatings. Dalton Trans. 2017, 46, 12988–12995.
Madian, M.; Klose, M.; Jaumann, T.; Gebert, A.; Oswald, S.; Ismail, N.; Eychmüller, A.; Eckert, J.; Giebeler, L. Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries. J. Mater. Chem. A 2016, 4, 5542–5552.
Tian, Q. H.; Zhang, Z. X.; Yang, L.; Hirano, S. I. Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries. J. Power Sources 2014, 253, 9–16.
Yi, Z.; Han, Q. G.; Ju, S. S.; Wu, Y. M.; Cheng, Y.; Wang, L. M. Fabrication of one-dimensional Sb@TiO2 composites as anode materials for lithium-ion batteries. J. Electrochem. Soc. 2016, 163, A2641–A2646.
Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802–1809.
Li, W.; Wang, K. L.; Cheng, S. J.; Jiang, K. An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 2019, 9, 1900993.
Wang, J. X.; Zhang, G. B.; Liu, Z. M.; Li, H. K.; Liu, Y.; Wang, Z. X.; Li, X. H.; Shih, K.; Mai, L. Q. Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 2018, 44, 272–278.
Jiao, X.; Zeng, T. B.; Ji, P. H.; Peng, Q. M.; Shang, B.; Hu, X. B. Sb embedded TiO2/C spheres as high cyclability anode for lithium ion battery. J. Alloys Compd. 2018, 739, 1–8.
Guo, M. Q.; Chen, J. J.; Meng, W. J.; Cheng, L. Y.; Bai, Z. C.; Wang, Z. H.; Yang, F. Q. Sb nanocrystal-anchored hollow carbon microspheres for high-capacity and high-cycling performance lithium-ion batteries. Nanotechnology 2020, 31, 135404.
Cui, C.; Zhang, R. P.; Fu, C. K.; Xiao, R.; Li, R. L.; Ma, Y. L.; Wang, J. J.; Gao, Y. Z.; Yin, G. P.; Zuo, P. J. Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chem. Eng. J. 2022, 433, 133570.
Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.
Wang, A. N.; Li, J.; Yi, M. Y.; Xie, Y. Y.; Chang, S. L.; Shi, H. B.; Zhang, L. Y.; Bai, M. H.; Zhou, Y. G.; Lai, Y. Q. et al. Stable all-solid-state lithium metal batteries enabled by ultrathin LiF/Li3Sb hybrid interface layer. Energy Storage Mater. 2022, 49, 246–254.