Graphical Abstract

Lithium–sulfur (Li–S) batteries hold great promise to be the next-generation candidate for high-energy-density secondary batteries but in the prerequisite of using low electrolyte-to-sulfur (E/S) ratios. Highly solvating electrolytes (HSEs) and sparingly solvating electrolytes (SSEs), with opposite nature towards the dissolution of polysulfides, have recently emerged as two effective solutions to decrease the E/S ratio and increase the overall practical energy density of Li–S batteries. HSEs featuring with high polysulfide solvation ability have the potential to reduce the E/S ratio by dissolving more polysulfides with less electrolyte, while SSEs alter the sulfur reaction pathway from a dissolution–precipitation mechanism to a quasi-solid mechanism, thereby independent on the use of electrolyte amount. Both HSEs and SSEs show respective effectiveness in lean-electrolyte Li–S batteries, but encounter different challenges to bring Li–S batteries into practical application. This review aims to present a comparative discussion on their unique features and basic electrochemical reaction mechanisms in practical lean-electrolyte Li–S batteries. Emphasis is focused on the current technical challenges and possible solutions for their future development.
Yu, X. W.; Manthiram, A. Sustainable battery materials for next-generation electrical energy storage. Adv. Energy Sustain. Res. 2021, 2, 2000102.
Liang, Y. R.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W. C.; Huang, J. Q.; Yu, D. S.; Liu, Y. L.; Titirici, M. M.; Chueh, Y. L. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32.
Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium–sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.
Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.
Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.
Ye, H. L.; Li, Y. G. Review on multivalent rechargeable metal-organic batteries. Energy Fuels 2021, 35, 7624–7636.
Jin, C. B.; Liu, T. F, ; Sheng, O. W.; Li, M.; Liu, T. C.; Yuan, Y. F.; Nai, J. W.; Ju, Z. J.; Zhang, W. K.; Liu, Y. J. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 2021, 6, 378–387.
Li, Y. G.; Lu, J. Metal–air batteries: Will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2017, 2, 1370–1377.
Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium–sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.
Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.
Li, M.; Lu, J.; Ji, X. L.; Li, Y. G.; Shao, Y. Y.; Chen, Z. W.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276–294.
Ye, H. L.; Li, Y. G. Room-temperature metal–sulfur batteries: What can we learn from lithium–sulfur? InfoMat 2022, 4, e12291.
Yang, Y. X.; Zhong, Y. R.; Shi, Q. W.; Wang, Z. H.; Sun, K. N.; Wang, H. L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem., Int. Ed. 2018, 57, 15549–15552.
Yan, Y. Y.; Cheng, C.; Zhang, L.; Li, Y. G.; Lu, J. Deciphering the reaction mechanism of lithium–sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv. Energy Mater. 2019, 9, 1900148.
Zhou, L.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Host materials anchoring polysulfides in Li–S batteries reviewed. Adv. Energy Mater. 2021, 11, 2001304.
Yang, X. F.; Li, X.; Adair, K.; Zhang, H. M.; Sun, X. L. Structural design of lithium–sulfur batteries: From fundamental research to practical application. Electrochem. Energy Rev. 2018, 1, 239–293.
Ye, H. L.; Lee, J. Y. Solid additives for improving the performance of sulfur cathodes in lithium–sulfur batteries—Adsorbents, mediators, and catalysts. Small Methods 2020, 4, 1900864.
Pan, H. L.; Chen, J. Z.; Cao, R. G.; Murugesan, V.; Rajput, N. N.; Han, K. S.; Persson, K.; Estevez, L.; Engelhard, M. H.; Zhang, J. G. et al. Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2017, 2, 813–820.
Wu, F. X.; Lee, J. T.; Nitta, N.; Kim, H.; Borodin, O.; Yushin, G. Lithium iodide as a promising electrolyte additive for lithium–sulfur batteries: Mechanisms of performance enhancement. Adv. Mater. 2015, 27, 101–108.
Cheng, L.; Curtiss, L. A.; Zavadil, K. R.; Gewirth, A. A.; Shao, Y. Y.; Gallagher, K. G. Sparingly solvating electrolytes for high energy density lithium–sulfur batteries. ACS Energy Lett. 2016, 1, 503–509.
Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 2018, 30, 1705590.
Dörfler, S.; Strubel, P.; Jaumann, T.; Troschke, E.; Hippauf, F.; Kensy, C.; Schökel, A.; Althues, H.; Giebeler, L.; Oswald, S. et al. On the mechanistic role of nitrogen-doped carbon cathodes in lithium–sulfur batteries with low electrolyte weight portion. Nano Energy 2018, 54, 116–128.
Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.
Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li–S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.
Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 2020, 20, 1252–1261.
Ye, H. L.; Sun, J. G.; Zhao, Y.; Lee, J. Y. An integrated approach to improve the performance of lean-electrolyte lithium–sulfur batteries. J. Energy Chem. 2022, 67, 585–592.
Yang, C.; Li, P.; Yu, J.; Zhao, L. D.; Kong, L. Approaching energydense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy 2020, 201, 117718.
Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.
Xie, J.; Peng, H. J.; Song, Y. W.; Li, B. Q.; Xiao, Y.; Zhao, M.; Yuan, H.; Huang, J. Q.; Zhang, Q. Spatial and kinetic regulation of sulfur electrochemistry on semi-immobilized redox mediators in working batteries. Angew. Chem., Int. Ed. 2020, 59, 17670–17675.
Jin, C. B.; Sheng, O. W.; Zhang, W. K.; Luo, J. M.; Yuan, H. D.; Yang, T.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C. et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode. Energy Storage Mater. 2018, 15, 218–225.
Fan, F. Y.; Pan, M. S.; Lau, K. C.; Assary, R. S.; Woodford, W. H.; Curtiss, L. A.; Carter, W. C.; Chiang, Y. M. Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium–sulfur batteries. J. Electrochem. Soc. 2016, 163, A3111–A3116.
Huang, J. D.; Li, F.; Wu, M. F.; Wang, H. P.; Qi, S. H.; Jiang, G. X.; Li, X.; Ma, J. M. Electrolyte chemistry for lithium metal batteries. Sci. China Chem. 2022, 65, 840–857.
Ye, H. L.; Sun, J. G.; Lim, X. F.; Zhao, Y.; Lee, J. Y. Mediator-assisted catalysis of polysulfide conversion for high-loading lithium–sulfur batteries operating under the lean electrolyte condition. Energy Storage Mater. 2021, 38, 338–343.
Kong, L.; Yin, L. H.; Xu, F.; Bian, J. C.; Yuan, H. M.; Lu, Z. G.; Zhao, Y. S. Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. J. Energy Chem. 2021, 55, 80–91.
Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium–sulfur batteries. Joule 2021, 5, 2323–2364.
Zou, Q. L.; Lu, Y. C. Liquid electrolyte design for metal–sulfur batteries: Mechanistic understanding and perspective. EcoMat 2021, 3, e12115.
Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 2015, 5, 1500118.
Chung, S. H.; Chang, C. H.; Manthiram, A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv. Funct. Mater. 2018, 28, 1801188.
Chen, X.; Hou, T. Z.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives. Mater. Today 2019, 22, 142–158.
Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.
He, J.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium–sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.
Song, Y. Z.; Cai, W. L.; Kong, L.; Cai, J. S.; Zhang, Q.; Sun, J. Y. Rationalizing electrocatalysis of Li–S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2020, 10, 1901075.
Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi, L. J.; Yang, Q. H. Catalytic effects in lithium–sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.
Gofer, Y.; Ely, Y. E.; Aurbach, D. Surface chemistry of lithium in 1, 3-dioxolane. Electrochim. Acta 1992, 37, 1897–1899.
Zhang, G.; Zhang, Z. W.; Peng, H. J.; Huang, J. Q.; Zhang, Q. A toolbox for lithium–sulfur battery research: Methods and protocols. Small Methods 2017, 1, 1700134.
Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium–sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.
Pan, H. L.; Han, K. S.; Engelhard, M. H.; Cao, R. G.; Chen, J. Z.; Zhang, J. G.; Mueller, K. T.; Shao, Y. Y.; Liu, J. Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Func. Mater. 2018, 28, 1707234.
Fu, Y. Z.; Su, Y. S.; Manthiram, A. Li2S-carbon sandwiched electrodes with superior performance for lithium–sulfur batteries. Adv. Energy Mater. 2014, 4, 1300655.
Zhang, B. H.; Wu, J. F.; Gu, J. K.; Li, S.; Yan, T. Y.; Gao, X. P. The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium–sulfur batteries. ACS Energy Lett. 2021, 6, 537–546.
Ye, H. L.; Li, M.; Liu, T. C.; Li, Y. G.; Lu, J. Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries. ACS Energy Lett. 2020, 5, 2234–2245.
Ye, H. L.; Sun, J. G.; Zhang, S. L.; Lin, H. B.; Zhang, T. R.; Yao, Q. F.; Lee, J. Y. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li–S batteries. ACS Nano 2019, 13, 14208–14216.
Fan, F. Y.; Chiang, Y. M. Electrodeposition kinetics in Li-S batteries: Effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 2017, 164, A917–A922.
Gupta, A.; Bhargav, A.; Manthiram, A. Highly solvating electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 2019, 9, 1803096.
Gupta, A.; Bhargav, A.; Manthiram, A. Evoking high donor numberassisted and organosulfur-mediated conversion in lithium–sulfur batteries. ACS Energy Lett. 2021, 6, 224–231.
Lee, C. W.; Pang, Q.; Ha, S.; Cheng, L.; Han, S. D.; Zavadil, K. R.; Gallagher, K. G.; Nazar, L. F.; Balasubramanian, M. Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries. ACS Cent. Sci. 2017, 3, 605–613.
Baek, M.; Shin, H.; Char, K.; Choi, J. W. New high donor electrolyte for lithium–sulfur batteries. Adv. Mater. 2020, 32, 2005022.
Ye, H. L.; Sun, J. G.; Zhang, S. L.; Zhang, T. R.; Zhao, Y.; Song, C. Y.; Yao, Q. F.; Lee, J. Y. Enhanced polysulfide conversion catalysis in lithium–sulfur batteries with surface cleaning electrolyte additives. Chem. Eng. J. 2021, 410, 128284.
Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2005991.
Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F. Radical or not radical: Revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 2015, 5, 1401801.
Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium–sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.
Zhang, G.; Peng, H. J.; Zhao, C. Z.; Chen, X.; Zhao, L. D.; Li, P.; Huang, J. Q.; Zhang, Q. The radical pathway based on a lithiummetal-compatible high-dielectric electrolyte for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16732–16736.
Chu, H.; Noh, H.; Kim, Y. J.; Yuk, S.; Lee, J. H.; Lee, J.; Kwack, H.; Kim, Y.; Yang, D. K.; Kim, H. T. Achieving three-dimensional lithium sulfide growth in lithium–sulfur batteries using high-donor-number anions. Nat. Commun. 2019, 10, 188.
Lian, J.; Guo, W.; Fu, Y. Z. Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li–S batteries. J. Am. Chem. Soc. 2021, 143, 11063–11071.
Gao, X. J.; Yang, X. F.; Li, M. S.; Sun, Q.; Liang, J. N.; Luo, J.; Wang, J. W.; Li, W. H.; Liang, J. W.; Liu, Y. L. et al. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li–S batteries. Adv. Funct. Mater. 2019, 29, 1806724.
Pang, Q.; Liang, X.; Shyamsunder, A.; Nazar, L. F. An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 2017, 1, 871–886.
Liang, J. W.; Li, X. N.; Zhao, Y.; Goncharova, L. V.; Wang, G. M.; Adair, K. R.; Wang, C. H.; Li, R. Y.; Zhu, Y. C.; Qian, Y. T. et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes. Adv. Mater. 2018, 30, 1804684.
Chu, H.; Jung, J.; Noh, H.; Yuk, S.; Lee, J.; Lee, J. H.; Baek, J.; Roh, Y.; Kwon, H.; Choi, D. et al. Unraveling the dual functionality of high-donor-number anion in lean-electrolyte lithium–sulfur batteries. Adv. Energy Mater. 2020, 10, 2000493.
Du, G. Y.; Liu, C. Y.; Li, E. Y. A DFT investigation on the origins of solvent-dependent polysulfide reduction mechanism in rechargeable Li–S batteries. Catalysts 2020, 10, 911.
Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.
He, J. R.; Bhargav, A.; Manthiram, A. High-performance anode-free Li–S batteries with an integrated Li2S-electrocatalyst cathode. ACS Energy Lett. 2022, 7, 583–590.
Xiang, J. L.; Zhao, Y. W.; Wang, L.; Zha, C. Y. The presolvation strategy of Li2S cathodes for lithium–sulfur batteries: A review. J. Mater. Chem. A 2022, 10, 10326–10341.
Yuan, H. D.; Zhang, W. K.; Wang, J. G.; Zhou, G. M.; Zhuang, Z. Z.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y. et al. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium–sulfur batteries. Energy Storage Mater. 2018, 10, 1–9.
Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium–sulfur batteries. ACS Energy Lett. 2017, 2, 1711–1719.
Li, H. T.; Li, Y. G.; Zhang, L. Designing principles of advanced sulfur cathodes toward practical lithium–sulfur batteries. SusMat 2022, 2, 34–64.
Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 2018, 3, 783–791.
Huang, F. F.; Gao, L. J.; Zou, Y. P.; Ma, G. Q.; Zhang, J. J.; Xu, S. Q.; Li, Z. X.; Liang, X. Akin solid–solid biphasic conversion of a Li–S battery achieved by coordinated carbonate electrolytes. J. Mater. Chem. A 2019, 7, 12498–12506.
Weller, C.; Pampel, J.; Dörfler, S.; Althues, H.; Kaskel, S. Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium–sulfur batteries. Energy Technol. 2019, 7, 1900625.
Cheng, Q.; Xu, W. H.; Qin, S. Y.; Das, S.; Jin, T. W.; Li, A. J.; Li, A. C.; Qie, B. Y.; Yao, P. C.; Zhai, H. W. et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium–sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 5557–5561.
Zheng, J.; Ji, G. B.; Fan, X. L.; Chen, J.; Li, Q.; Wang, H. Y.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. S. High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 2019, 9, 1803774.
Shin, W.; Zhu, L. D.; Jiang, H.; Stickle, W. F.; Fang, C.; Liu, C.; Lu, J.; Ji, X. L. Fluorinated co-solvent promises Li–S batteries under lean-electrolyte conditions. Mater. Today 2020, 40, 63–71.
Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.
Cuisinier, M.; Cabelguen, P. E.; Adams, B. D.; Garsuch, A.; Balasubramanian, M.; Nazar, L. F. Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy Environ. Sci. 2014, 7, 2697–2705.
See, K. A.; Wu, H. L.; Lau, K. C.; Shin, M.; Cheng, L.; Balasubramanian, M.; Gallagher, K. G.; Curtiss, L. A.; Gewirth, A. A. Effect of hydrofluoroether cosolvent addition on Li solvation in acetonitrile-based solvate electrolytes and its influence on S reduction in a Li–S battery. ACS Appl. Mater. Interfaces 2016, 8, 34360–34371.
Pan, H. L.; Han, K. S.; Vijayakumar, M.; Xiao, J.; Cao, R. G.; Chen, J. Z.; Zhang, J. G.; Mueller, K. T.; Shao, Y. Y.; Liu, J. Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 4290–4295.
Shyamsunder, A.; Beichel, W.; Klose, P.; Pang, Q.; Scherer, H.; Hoffmann, A.; Murphy, G. K.; Krossing, I.; Nazar, L. F. Inhibiting polysulfide shuttle in lithium–sulfur batteries through low-ion-pairing salts and a triflamide solvent. Angew. Chem., Int. Ed. 2017, 56, 6192–6197.