AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management

Zechang Wei§Jiang Wang§Shuai Guo§Swee Ching Tan( )
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore

§ Zechang Wei, Jiang Wang and Shuai Guo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

With the development of the industry, water pollution and shortage have become serious global problems. Owing to the abundance of seawater storage on earth, efficient solar-driven evaporation is a promising approach to relieve the freshwater shortage. The solar-driven evaporation has attracted tremendous attention due to its potential application in the seawater desalination and wastewater treatment fields. Also, the solar-driven evaporation efficiency can be enhanced by designing both solar absorbers and structures. Up to now, many strategies have been explored to achieve high solar-driven evaporation efficiency, mainly including the selection of photothermal conversion materials and structure optimization. In this review, the solar absorbers, structural designs, and energy management are proposed as the keys for high performance solar-driven evaporation systems. We report four kinds of solar absorbers based on different photothermal conversion mechanisms, substrate structure designs, and energy management methods for the purpose to achieve high conversion efficiency. And we also systematically investigate the available salt-rejections strategies for seawater desalination. This review aims to summarize the current development of efficient solar-driven evaporation systems and provide insights into the photothermal conversion materials, structural designs, and energy management. Finally, we propose the perspectives of the salt-rejection technologies for seawater desalination.

References

[1]

Li, X. B.; Guan, C. F.; Gao, X. D.; Zuo, X. H.; Yang, W. M.; Yan, H.; Shi, M. N.; Li, H. Y.; Sain, M. High efficiency solar membranes structurally designed with 3D core–2D shell SiO2@amino-carbon hybrid advanced composite for facile steam generation. ACS Appl. Mater. Interfaces 2020, 12, 35493–35501.

[2]

Jiang, H. L.; Ai, L. H.; Chen, M.; Jiang, J. Broadband nickel sulfide/nickel foam-based solar evaporator for highly efficient water purification and electricity generation. ACS Sustainable Chem. Eng. 2020, 8, 10833–10841.

[3]

Kim, J. U.; Kang, S. J.; Lee, S.; Ok, J.; Kim, Y.; Roh, S. H.; Hong, H.; Kim, J. K.; Chae, H.; Kwon, S. J. et al. Omnidirectional, broadband light absorption in a hierarchical nanoturf membrane for an advanced solar-vapor generator. Adv. Funct. Mater. 2020, 30, 2003862.

[4]

Suresh, L.; Vaghasiya, J. V.; Kannan, U. P.; Zhang, Y. X.; Ravi, S. K.; Paul, N.; Jones, M. R.; Tan, S. C. 1,200% Enhancement of solar energy conversion by engineering three dimensional arrays of flexible biophotoelectrochemical cells in a fixed footprint encompassed by Johnson solid shaped optical well. Nano Energy 2021, 79, 105424.

[5]

Nandakumar, D. K.; Vaghasiya, J. V.; Yang, L.; Zhang, Y. X.; Tan, S. C. A solar cell that breathes in moisture for energy generation. Nano Energy 2020, 68, 104263.

[6]

Nandakumar, D. K.; Zhang, Y. X.; Ravi, S. K.; Guo, N.; Zhang, C.; Tan, S. C. Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv. Mater. 2019, 31, 1806730.

[7]

Yu, Z.; Gu, R. N.; Zhang, Y. X.; Guo, S.; Cheng, S. A.; Tan, S. C. High-flux flowing interfacial water evaporation under multiple heating sources enabled by a biohybrid hydrogel. Nano Energy 2022, 98, 107287.

[8]
Zhang, Y. X.; Tan, S. C. Best practices for solar water production technologies. Nat. Sustain., in press, https://doi.org/10.1038/s41893-022-00880-1.
[9]

Liu, X. H.; Mishra, D. D.; Wang, X. B.; Peng, H. Y.; Hu, C. Q. Towards highly efficient solar-driven interfacial evaporation for desalination. J. Mater. Chem. A 2020, 8, 17907–17937.

[10]

Zhang, Y. X.; Ravi, S. K.; Yang, L.; Vaghasiya, J. V.; Suresh, L.; Tan, I.; Tan, S. C. Portable trilayer photothermal structure for hybrid energy harvesting and synergic water purification. ACS Appl. Mater. Interfaces 2019, 11, 38674–38682.

[11]

Zhang, Y. X.; Ravi, S. K.; Tan, S. C. Systematic study of the effects of system geometry and ambient conditions on solar steam generation for evaporation optimization. Adv. Sustainable Syst. 2019, 3, 1900044.

[12]

Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

[13]

Zhang, Y. X.; Xiong, T.; Nandakumar, D. K.; Tan, S. C. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 2020, 7, 1903478.

[14]

Lin, Y. W.; Xu, H.; Shan, X. L.; Di, Y. S.; Zhao, A. Q.; Hu, Y. J.; Gan, Z. X. Solar steam generation based on the photothermal effect: From designs to applications, and beyond. J. Mater. Chem. A 2019, 7, 19203–19227.

[15]

Xu, Z. R.; Li, Z. D.; Jiang, Y. H.; Xu, G. X.; Zhu, M. W.; Law, W. C.; Yong, K. T.; Wang, Y. S.; Yang, C. B.; Dong, B. Q. et al. Recent advances in solar-driven evaporation systems. J. Mater. Chem. A 2020, 8, 25571–25600.

[16]

Yin, Z.; Wang, H. M.; Jian, M. Q.; Li, Y. S.; Xia, K. L.; Zhang, M. C.; Wang, C. Y.; Wang, Q.; Ma, M.; Zheng, Q. S. et al. Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl. Mater. Interfaces 2017, 9, 28596–28603.

[17]

Sun, P.; Wang, W. L.; Zhang, W.; Zhang, S. Q.; Gu, J. J.; Yang, L.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D Interconnected gyroid Au-CuS materials for efficient solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 34837–34847.

[18]

Yang, J.; Chen, Y.; Jia, X. H.; Li, Y.; Wang, S. Z.; Song, H. J. Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 47029–47037.

[19]

Zhang, Y. X.; Xiong, T.; Suresh, L.; Qu, H.; Zhang, X. P.; Zhang, Q.; Yang, J. C.; Tan, S. C. Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and in situ energy generation. ACS Energy Lett. 2020, 5, 3397–3404.

[20]

Cao, S. S.; Jiang, Q. S.; Wu, X. H.; Ghim, D.; Derami, H. G.; Chou, P. I.; Jun, Y. S.; Singamaneni, S. Advances in solar evaporator materials for freshwater generation. J. Mater. Chem. A 2019, 7, 24092–24123.

[21]

Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30–38.

[22]

Liu, G. H.; Xu, J. L.; Wang, K. Y. Solar water evaporation by black photothermal sheets. Nano Energy 2017, 41, 269–284.

[23]

Zhang, Y. X.; Ravi, S. K.; Tan, S. C. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy 2019, 65, 104006.

[24]

Zhang, X. F.; Wu, G.; Yang, X. C. MoS2 nanosheet-carbon foam composites for solar steam generation. ACS Appl. Nano Mater. 2020, 3, 9706–9714.

[25]

Ebrahimi, A.; Goharshadi, E. K.; Mohammadi, M. Reduced graphene oxide/silver/wood as a salt-resistant photoabsorber in solar steam generation and a strong antibacterial agent. Mater. Chem. Phys. 2022, 275, 125258.

[26]

Zhang, Y.; Yin, X. Y.; Yu, B.; Wang, X. L.; Guo, Q. Q.; Yang, J. Recyclable polydopamine-functionalized sponge for high-efficiency clean water generation with dual-purpose solar evaporation and contaminant adsorption. ACS Appl. Mater. Interfaces 2019, 11, 32559–32568.

[27]

Li, H. X.; Wen, H. F.; Li, J.; Huang, J. C.; Wang, D.; Tang, B. Z. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 26033–26040.

[28]

Prakoso, S. P.; Sun, S. S.; Saleh, R.; Tao, Y. T.; Wang, C. L. Tailoring photophysical properties of diketopyrrolopyrrole small molecules with electron-withdrawing moieties for efficient solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 38365–38374.

[29]

Zhou, S. Y.; Kong, X. Y.; Strømme, M.; Xu, C. Efficient solar thermal energy conversion and utilization by a film of conductive metal-organic framework layered on nanocellulose. ACS Mater. Lett. 2022, 4, 1058–1064.

[30]

Xiao, C. H.; Liang, W. D.; Hasi, Q. M.; Wang, F.; Chen, L. H.; He, J. X.; Liu, F.; Sun, H. X.; Zhu, Z. Q.; Li, A. Efficient solar steam generation of carbon black incorporated hyper-cross-linked polymer composites. ACS Appl. Energy Mater. 2020, 3, 11350–11358.

[31]

Yuan, J.; Lei, X.; Yi, C. Q.; Jiang, H. Q.; Liu, F.; Cheng, G. J. 3D-printed hierarchical porous cellulose/alginate/carbon black hydrogel for high-efficiency solar steam generation. Chem. Eng. J. 2022, 430, 132765.

[32]

Li, Q. W.; Zhao, X.; Li, L. X.; Hu, T.; Yang, Y. F.; Zhang, J. P. Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination. J. Colloid Interface Sci. 2021, 584, 602–609.

[33]

Wang, S.; Niu, Y.; Wang, C. J.; Wang, F.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. Modified hollow glass microspheres/reduced graphene oxide composite aerogels with low thermal conductivity for highly efficient solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 42803–42812.

[34]

Ying, P. J.; Ai, B.; Hu, W.; Geng, Y.; Li, L.; Sun, K.; Tan, S. C.; Zhang, W.; Li, M. A bio-inspired nanocomposite membrane with improved light-trapping and salt-rejecting performance for solar-driven interfacial evaporation applications. Nano Energy 2021, 89, 106443.

[35]

Yang, L.; Chen, G. L.; Zhang, N.; Xu, Y. X.; Xu, X. F. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification. ACS Sustainable Chem. Eng. 2019, 7, 19311–19320.

[36]

Zhang, Y. X.; Ravi, S. K.; Vaghasiya, J. V.; Tan, S. C. A barbeque-analog route to carbonize moldy bread for efficient steam generation. iScience 2018, 3, 31–39.

[37]

Zheng, Z. M.; Li, H. Y.; Zhang, X. D.; Jiang, H.; Geng, X. M.; Li, S. M.; Tu, H. Y.; Cheng, X. R.; Yang, P.; Wan, Y. F. High-absorption solar steam device comprising Au@Bi2MoO6-CDs: Extraordinary desalination and electricity generation. Nano Energy 2020, 68, 104298.

[38]

Wang, G.; Fu, Y.; Guo, A. K.; Mei, T.; Wang, J. Y.; Li, J. H.; Wang, X. B. Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem. Mater. 2017, 29, 5629–5635.

[39]

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

[40]

Li, T.; Liu, H.; Zhao, X. P.; Chen, G.; Dai, J. Q.; Pastel, G.; Jia, C.; Chen, C. J.; Hitz, E.; Siddhartha, D. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 2018, 28, 1707134.

[41]

Shan, X. L.; Xiong, M. Y.; Sheng, Y. H.; Zhao, A. Q.; Di, Y. S.; Liu, C. H.; Gan, Z. X. Concentrated acid-induced dehydration of fallen leaves for efficient, sustainable, and self-cleaning solar steam generation. Adv. Energy Sustain. Res. 2020, 1, 2000034.

[42]

Shan, X. L.; Zhao, A. Q.; Lin, Y. W.; Hu, Y. J.; Di, Y. S.; Liu, C. H.; Gan, Z. X. Low-cost, scalable, and reusable photothermal layers for highly efficient solar steam generation and versatile energy conversion. Adv. Sustainable Syst. 2020, 4, 1900153.

[43]

Wang, W. S.; Li, D. Y.; Zuo, S. Y.; Guan, Z. Y.; Xu, H. M.; Ding, S.; Xia, D. S. Discarded-leaves derived biochar for highly efficient solar water evaporation and clean water production: The crucial roles of graphitized carbon. Colloids Surf. A Physicochem. Eng. Asp. 2022, 639, 128337.

[44]

Peng, H. Y.; Wang, D.; Fu, S. H. Programmable asymmetric nanofluidic photothermal textile umbrella for concurrent salt management and in situ power generation during long-time solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 47549–47559.

[45]

Lin, Z. X.; Wu, T. T.; Feng, Y. F.; Shi, J.; Zhou, B.; Zhu, C. H.; Wang, Y. Y.; Liang, R. L.; Mizuno, M. Poly(N-phenylglycine)/MoS2 nanohybrid with synergistic solar-thermal conversion for efficient water purification and thermoelectric power generation. ACS Appl. Mater. Interfaces 2022, 14, 1034–1044.

[46]

Shang, M. Y.; Li, N.; Zhang, S. D.; Zhao, T. T.; Zhang, C.; Liu, C.; Li, H. F.; Wang, Z. Y. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Appl. Energy Mater. 2018, 1, 56–61.

[47]

Wu, X.; Robson, M. E.; Phelps, J. L.; Tan, J. S.; Shao, B.; Owens, G.; Xu, H. L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 2019, 56, 708–715.

[48]

Pan, J. F.; Yu, X. H.; Dong, J. J.; Zhao, L.; Liu, L. L.; Liu, J. L.; Zhao, X. T.; Liu, L. F. Diatom-inspired TiO2-PANi-decorated bilayer photothermal foam for solar-driven clean water generation. ACS Appl. Mater. Interfaces 2021, 13, 58124–58133.

[49]

Wu, D.; Zhao, C. X.; Xu, Y.; Zhang, X.; Yang, L. L.; Zhang, Y.; Gao, Z. D.; Song, Y. Y. Modulating solar energy harvesting on TiO2 nanochannel membranes by plasmonic nanoparticle assembly for desalination of contaminated seawater. ACS Appl. Nano Mater. 2020, 3, 10895–10904.

[50]

Guo, Q. J.; An, Q.; Yi, H.; Jia, F. F.; Song, S. X. Double-layered montmorillonite/MoS2 aerogel with vertical channel for efficient and stable solar interfacial desalination. Appl. Clay Sci. 2022, 217, 106389.

[51]

Xiao, J. X.; Guo, Y.; Luo, W. Q.; Wang, D.; Zhong, S. K.; Yue, Y. R.; Han, C. N.; Lv, R. X.; Feng, J. B.; Wang, J. Q. et al. A scalable, cost-effective and salt-rejecting MoS2/SA@melamine foam for continuous solar steam generation. Nano Energy 2021, 87, 106213.

[52]

Wang, Z. G.; Yu, K.; Gong, S. J.; Mao, H. B.; Huang, R.; Zhu, Z. Q. Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 2021, 13, 16246–16258.

[53]

Su, L. F.; Hu, Y. Q.; Ma, Z. Q.; Miao, L.; Zhou, J. H.; Ning, Y. Y.; Chang, Z. P.; Wu, B.; Cao, M.; Xia, R. et al. Synthesis of hollow copper sulfide nanocubes with low emissivity for highly efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2020, 210, 110484.

[54]

Ying, P. J.; Li, M.; Yu, F. L.; Geng, Y.; Zhang, L. Y.; He, J. J.; Zheng, Y. J.; Chen, R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces 2020, 12, 32880–32887.

[55]

Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

[56]

Politano, A.; Argurio, P.; Di Profio, G.; Sanna, V.; Cupolillo, A.; Chakraborty, S.; Arafat, H. A.; Curcio, E. Photothermal membrane distillation for seawater desalination. Adv. Mater. 2017, 29, 1603504.

[57]

Fu, Y.; Mei, T.; Wang, G.; Guo, A. K.; Dai, G. C.; Wang, S.; Wang, J. Y.; Li, J. H.; Wang, X. B. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Appl. Therm. Eng. 2017, 114, 961–968.

[58]

Chen, J. X.; Feng, J.; Li, Z. W.; Xu, P. P.; Wang, X. J.; Yin, W. W.; Wang, M. Z.; Ge, X. W.; Yin, Y. D. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 2019, 19, 400–407.

[59]

Ren, L. T.; Yi, X. L.; Yang, Z. S.; Wang, D. F.; Liu, L. Q.; Ye, J. H. Designing carbonized loofah sponge architectures with plasmonic Cu nanoparticles encapsulated in graphitic layers for highly efficient solar vapor generation. Nano Lett. 2021, 21, 1709–1715.

[60]

Guo, S.; Zhang, Y. X.; Qu, H.; Li, M.; Zhang, S. L.; Yang, J. C.; Zhang, X. P.; Tan, S. C. Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming. EcoMat 2022, 4, e12179.

[61]

Yin, X. Y.; Zhang, Y.; Guo, Q. Q.; Cai, X. B.; Xiao, J. F.; Ding, Z. F.; Yang, J. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Appl. Mater. Interfaces 2018, 10, 10998–11007.

[62]

Yu, Z.; Gu, R. N.; Tian, Y.; Xie, P. F.; Jin, B. C.; Cheng, S. A. Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 2022, 32, 2108586.

[63]

Zou, Y.; Zhao, J. Y.; Zhu, J. Y.; Guo, X. Y.; Chen, P.; Duan, G. G.; Liu, X. H.; Li, Y. W. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624.

[64]

Hong, S.; Shi, Y.; Li, R. Y.; Zhang, C.; Jin, Y.; Wang, P. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 2018, 10, 28517–28524.

[65]

Fang, Q. L.; Li, T. T.; Lin, H. B.; Jiang, R. R.; Liu, F. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance. ACS Appl. Energy Mater. 2019, 2, 4354–4361.

[66]

Zhang, Y. X.; Guo, S.; Yu, Z. G.; Qu, H.; Sun, W. X.; Yang, J. C.; Suresh, L.; Zhang, X. P.; Koh, J. J.; Tan, S. C. An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage. Adv. Mater. 2022, 34, 2201228.

[67]

Zhang, Y. X.; Nandakumar, D. K.; Tan, S. C. Digestion of ambient humidity for energy generation. Joule 2020, 4, 2532–2536.

[68]

Chen, C. J.; Li, Y. J.; Song, J. W.; Yang, Z.; Kuang, Y. D.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J. Y. et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29, 1701756.

[69]

Liu, H.; Chen, C. J.; Chen, G.; Kuang, Y. D.; Zhao, X. P.; Song, J. W.; Jia, C.; Xu, X.; Hitz, E.; Xie, H. et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 2018, 8, 1701616.

[70]

Zhu, M. W.; Li, Y. J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X. G.; Wang, Y. B.; Lacey, S. D.; Dai, J. Q.; Wang, C. W. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107.

[71]

Xu, S.; Li, S. Y.; Zhang, M.; Zeng, H. Y.; Wu, K.; Tian, X. Y.; Chen, C. R.; Pan, Y. Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene. Carbohydr. Polym. 2020, 234, 115891.

[72]

Li, W.; Li, X. F.; Liu, J.; Zeng, M. J.; Feng, X. Y.; Jia, X. Q.; Yu, Z. Z. Coating of wood with Fe2O3-decorated carbon nanotubes by one-step combustion for efficient solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 22845–22854.

[73]

Li, J. Y.; Zhou, X.; Mu, P.; Wang, F.; Sun, H. X.; Zhu, Z. Q.; Zhang, J. W.; Li, W. W.; Li, A. Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators. ACS Appl. Mater. Interfaces 2020, 12, 798–806.

[74]

Fang, Q. L.; Li, T. T.; Chen, Z. M.; Lin, H. B.; Wang, P.; Liu, F. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces 2019, 11, 10672–10679.

[75]

Xiao, C. H.; Chen, L. H.; Mu, P.; Jia, J.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Sugarcane-based photothermal materials for efficient solar steam generation. ChemistrySelect 2019, 4, 7891–7895.

[76]

Jiang, Q. S.; Tian, L. M.; Liu, K. K.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 2016, 28, 9400–9407.

[77]

Jiang, F.; Liu, H.; Li, Y. J.; Kuang, Y. D.; Xu, X.; Chen, C. J.; Huang, H.; Jia, C.; Zhao, X. P.; Hitz, E. et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 2018, 10, 1104–1112.

[78]

Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

[79]

Zhu, L. L.; Ding, T. P.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation. Adv. Energy Mater. 2019, 9, 1900250.

[80]

Mu, P.; Zhang, Z.; Bai, W.; He, J. X.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Adv. Energy Mater. 2019, 9, 1802158.

[81]

Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem., Int. Ed. 2019, 58, 19041–19046.

[82]

Xu, W. Z.; Xing, Y.; Liu, J.; Wu, H. P.; Cui, Y.; Li, D. W.; Guo, D. Y.; Li, C. R.; Liu, A. P.; Bai, H. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 2019, 13, 7930–7938.

[83]

Han, S. B.; Ruoko, T. P.; Gladisch, J.; Erlandsson, J.; Wågberg, L.; Crispin, X.; Fabiano, S. Cellulose-conducting polymer aerogels for efficient solar steam generation. Adv. Sustainable Syst. 2020, 4, 2000004.

[84]

Storer, D. P.; Phelps, J. L.; Wu, X.; Owens, G.; Khan, N. I.; Xu, H. L. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation. ACS Appl. Mater. Interfaces 2020, 12, 15279–15287.

[85]

Li, J. L.; Yu, F.; Jiang, Y.; Wang, L. Y.; Yang, X. J.; Li, X. S.; Lü, W.; Sun, X. J. Photothermal diatomite/carbon nanotube combined aerogel for high-efficiency solar steam generation and wastewater purification. Sol. RRL 2022, 6, 2101011.

[86]

Wang, H.; Zhang, R. J.; Yuan, D.; Xu, S. Y.; Wang, L. Y. Gas foaming guided fabrication of 3D porous plasmonic nanoplatform with broadband absorption, tunable shape, excellent stability, and high photothermal efficiency for solar water purification. Adv. Funct. Mater. 2020, 30, 2003995.

[87]

Wen, B. Y.; Zhang, X. Y.; Yan, Y. H.; Huang, Y. Q.; Lin, S.; Zhu, Y. L.; Wang, Z. P.; Zhou, B. H.; Yang, S. H.; Liu, J. Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation. Desalination 2021, 516, 115228.

[88]

Li, X. P.; Li, X. F.; Li, H. G.; Zhao, Y.; Li, W.; Yan, S. K.; Yu, Z. Z. 2D ferrous ion-crosslinked Ti3C2Tx MXene aerogel evaporators for efficient solar steam generation. Adv. Sustainable Syst. 2021, 5, 2100263.

[89]

Shen, C.; Zhu, Y. Q.; Xiao, X. D.; Xu, X. Q.; Chen, X. L.; Xu, G. Economical salt-resistant superhydrophobic photothermal membrane for highly efficient and stable solar desalination. ACS Appl. Mater. Interfaces 2020, 12, 35142–35151.

[90]

Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093.

[91]

Tao, F. J.; Zhang, Y. L.; Cao, S. J.; Yin, K.; Chang, X. T.; Lei, Y. H.; Fan, R. H.; Dong, L. H.; Yin, Y. S.; Chen, X. B. CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation. Mater. Today Energy 2018, 9, 285–294.

[92]

Xu, W. C.; Hu, X. Z.; Zhuang, S. D.; Wang, Y. X.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 2018, 8, 1702884.

[93]

Guo, A. K.; Ming, X.; Fu, Y.; Wang, G.; Wang, X. B. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation. ACS Appl. Mater. Interfaces 2017, 9, 29958–29964.

[94]

Yang, X. D.; Yang, Y. B.; Fu, L. N.; Zou, M. C.; Li, Z. H.; Cao, A. Y.; Yuan, Q. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation. Adv. Funct. Mater. 2018, 28, 1704505.

[95]

Kim, M.; Yang, K.; Kim, Y. S.; Won, J. C.; Kang, P.; Kim, Y. H.; Kim, B. G. Laser-induced photothermal generation of flexible and salt-resistant monolithic bilayer membranes for efficient solar desalination. Carbon 2020, 164, 349–356.

[96]

Guo, Z. Z.; Zhou, W.; Arshad, N.; Zhang, Z. X.; Yan, D.; Irshad, M. S.; Yu, L.; Wang, X. B. Excellent energy capture of hierarchical MoS2 nanosheets coupled with MXene for efficient solar evaporators and thermal packs. Carbon 2022, 186, 19–27.

[97]

Zhang, R.; Zhou, Y. W.; Xiang, B.; Zeng, X. J.; Luo, Y. L.; Meng, X. K.; Tang, S. C. Scalable carbon black enhanced nanofiber network films for high-efficiency solar steam generation. Adv. Mater. Interfaces 2021, 8, 2101160.

[98]

Wang, X.; Liu, Q. C.; Wu, S. Y.; Xu, B. X.; Xu, H. X. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 2019, 31, e1807716.

[99]

Wang, H. Q.; Zhang, C.; Zhang, Z. H.; Zhou, B.; Shen, J.; Du, A. Artificial trees inspired by Monstera for highly efficient solar steam generation in both normal and weak light environments. Adv. Funct. Mater. 2020, 30, 2005513.

[100]

Wu, X.; Wu, Z. Q.; Wang, Y. D.; Gao, T.; Li, Q.; Xu, H. L. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 2021, 8, 2002501.

[101]

Liu, Z. X.; Wu, B. H.; Zhu, B.; Chen, Z. G.; Zhu, M. F.; Liu, X. G. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 2019, 29, 1905485.

[102]

Zhu, Y. Q.; Tian, G. L.; Liu, Y. W.; Li, H. X.; Zhang, P.; Zhan, L.; Gao, R.; Huang, C. Low-cost, unsinkable, and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer. Adv. Sci. 2021, 8, e2101727.

[103]

Zhang, X. Y.; Ren, L. P.; Xu, J.; Shang, B.; Liu, X.; Xu, W. L. Magnetically driven tunable 3D structured Fe3O4 vertical array for high-performance solar steam generation. Small 2022, 18, e2105198.

[104]

Kou, H.; Liu, Z. X.; Zhu, B.; Macharia, D. K.; Ahmed, S.; Wu, B. H.; Zhu, M. F.; Liu, X. G.; Chen, Z. G. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 2019, 462, 29–38.

[105]

Zhou, J. H.; Gu, Y. F.; Liu, P. F.; Wang, P. F.; Miao, L.; Liu, J.; Wei, A. Y.; Mu, X. J.; Li, J. L.; Zhu, J. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions. Adv. Funct. Mater. 2019, 29, 1903255.

[106]

Chen, Y. L.; Zhao, G. M.; Ren, L. P.; Yang, H. J.; Xiao, X. F.; Xu, W. L. Blackbody-inspired array structural polypyrrole-sunflower disc with extremely high light absorption for efficient photothermal evaporation. ACS Appl. Mater. Interfaces 2020, 12, 46653–46660.

[107]

Yang, Q.; Xu, C.; Wang, F. X.; Ling, Z. Y.; Zhang, Z. G.; Fang, X. M. A high-efficiency and low-cost interfacial evaporation system based on graphene-loaded pyramid polyurethane sponge for wastewater and seawater treatments. ACS Appl. Energy Mater. 2019, 2, 7223–7232.

[108]

Koh, J. J.; Lim, G. J. H.; Chakraborty, S.; Zhang, Y. X.; Liu, S. Q.; Zhang, X. W.; Tan, S. C.; Lyu, Z.; Ding, J.; He, C. B. Robust, 3D-printed hydratable plastics for effective solar desalination. Nano Energy 2021, 79, 105436.

[109]

Lu, Y.; Fan, D. Q.; Wang, Y. D.; Xu, H. L.; Lu, C. H.; Yang, X. F. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 2021, 15, 10366–10376.

[110]

Lu, Y.; Fan, D. Q.; Shen, Z. Y.; Zhang, H.; Xu, H. L.; Yang, X. F. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 2022, 95, 107016.

[111]

Liu, Z. X.; Zhou, Z.; Wu, N. Y.; Zhang, R. Q.; Zhu, B.; Jin, H.; Zhang, Y. M.; Zhu, M. F.; Chen, Z. G. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 2021, 15, 13007–13018.

[112]

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

[113]

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Rosenberger, B.; Yu, G. H. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.

[114]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Shi, W.; Yu, G. H. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 2020, 32, 2007012.

[115]

Fan, D. Q.; Lu, Y.; Zhang, H.; Xu, H. L.; Lu, C. H.; Tang, Y. C.; Yang, X. F. Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl. Catal. B Environ. 2021, 295, 120285.

[116]

Hao, L.; Liu, N.; Bai, H. Y.; He, P. P.; Niu, R.; Gong, J. High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels. J. Colloid Interface Sci. 2022, 608, 840–852.

[117]

Guan, Q. F.; Han, Z. M.; Ling, Z. C.; Yang, H. B.; Yu, S. H. Sustainable wood-based hierarchical solar steam generator: A biomimetic design with reduced vaporization enthalpy of water. Nano Lett. 2020, 20, 5699–5704.

[118]

Wu, S. L.; Chen, H. L.; Wang, H. L.; Chen, X. L.; Yang, H. C.; Darling, S. B. Solar-driven evaporators for water treatment: Challenges and opportunities. Environ. Sci. Water Res. Technol. 2021, 7, 24–39.

[119]

Shi, Y.; Li, R. Y.; Jin, Y.; Zhuo, S. F.; Shi, L.; Chang, J.; Hong, S.; Ng, K. C.; Wang, P. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2018, 2, 1171–1186.

[120]

Wang, Y. D.; Wu, X.; Wu, P.; Zhao, J. Y.; Yang, X. F.; Owens, G.; Xu, H. L. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci. Bull. 2021, 66, 2479–2488.

[121]

Wang, Y. D.; Wu, X.; Yang, X. F.; Owens, G.; Xu, H. L. Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy 2020, 78, 105269.

[122]

Gan, Q. M.; Zhang, T. Q.; Chen, R.; Wang, X.; Ye, M. M. Simple, low-dose, durable, and carbon-nanotube-based floating solar still for efficient desalination and purification. ACS Sustainable Chem. Eng. 2019, 7, 3925–3932.

[123]

Wang, Y. C.; Zhang, L. B.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chem. Eng. 2016, 4, 1223–1230.

[124]

Dong, S. W.; Xu, Y. F.; Wang, C. J.; Liu, C. H.; Zhang, J. L.; Di, Y. S.; Yu, L. Y.; Dong, L. F.; Gan, Z. X. Atmospheric water harvester-assisted solar steam generation for highly efficient collection of distilled water. J. Mater. Chem. A 2022, 10, 1885–1890.

[125]

Sun, Y.; Zhao, Z. B.; Zhao, G. Y.; Wang, L. X.; Jia, D. Z.; Yang, Y. Z.; Liu, X. G.; Wang, X. Z.; Qiu, J. S. High performance carbonized corncob-based 3D solar vapor steam generator enhanced by environmental energy. Carbon 2021, 179, 337–347.

[126]

Zhang, Y. X.; Zhang, H.; Xiong, T.; Qu, H.; Koh, J. J.; Nandakumar, D. K.; Wang, J.; Tan, S. C. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation. Energy Environ. Sci. 2020, 13, 4891–4902.

[127]

Dong, X. Y.; Cao, L. T.; Si, Y.; Ding, B.; Deng, H. B. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 2020, 32, e1908269.

[128]

Kuang, Y. D.; Chen, C. J.; He, S. M.; Hitz, E. M.; Wang, Y. L.; Gan, W. T.; Mi, R. Y.; Hu, L. B. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 2019, 31, e1900498.

[129]

Dong, X. Y.; Si, Y.; Chen, C. J.; Ding, B.; Deng, H. B. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 2021, 15, 12256–12266.

[130]

Liu, Z. W.; Qing, R. K.; Xie, A. Q.; Liu, H.; Zhu, L. L.; Chen, S. Self-contained janus aerogel with antifouling and salt-rejecting properties for stable solar evaporation. ACS Appl. Mater. Interfaces 2021, 13, 18829–18837.

[131]

Wang, Z. X.; Wu, X. C.; He, F.; Peng, S. Q.; Li, Y. X. Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv. Funct. Mater. 2021, 31, 2011114.

[132]

Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. A.; Chen, G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519.

[133]

Lu, H. Y.; Shi, W.; Zhao, F.; Zhang, W. J.; Zhang, P. X.; Zhao, C. Y.; Yu, G. H. High-yield and low-cost solar water purification via hydrogel-based membrane distillation. Adv. Funct. Mater. 2021, 31, 2101036.

[134]

Wu, P.; Wu, X.; Xu, H. L.; Owens, G. Interfacial solar evaporation driven lead removal from a contaminated soil. EcoMat 2021, 3, e12140.

[135]

Wu, P.; Wu, X.; Wang, Y. D.; Xu, H. L.; Owens, G. Towards sustainable saline agriculture: Interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Res. 2022, 212, 118099.

[136]

Wu, X.; Wang, Y. D.; Wu, P.; Zhao, J. Y.; Lu, Y.; Yang, X. F.; Xu, H. L. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 2021, 31, 2102618.

[137]

Xia, Y.; Hou, Q. F.; Jubaer, H.; Li, Y.; Kang, Y.; Yuan, S.; Liu, H. Y.; Woo, M. W.; Zhang, L.; Gao, L. et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 2019, 12, 1840–1847.

[138]

Shi, Y.; Zhang, C. L.; Li, R. Y.; Zhuo, S. F.; Jin, Y.; Shi, L.; Hong, S.; Chang, J.; Ong, C.; Wang, P. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 2018, 52, 11822–11830.

[139]

Chen, J. X.; Yin, J. L.; Li, B.; Ye, Z. Y.; Liu, D. L.; Ding, D.; Qian, F.; Myung, N. V.; Zhang, Q.; Yin, Y. D. Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination. ACS Nano 2020, 14, 17419–17427.

[140]

Chen, K.; Li, L. X.; Zhang, J. P. Design of a separated solar interfacial evaporation system for simultaneous water and salt collection. ACS Appl. Mater. Interfaces 2021, 13, 59518–59526.

[141]

Li, L.; He, N.; Jiang, B.; Yu, K. W.; Zhang, Q.; Zhang, H. T.; Tang, D. W.; Song, Y. C. Highly salt-resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 2021, 31, 2104380.

[142]

Cooper, T. A.; Zandavi, S. H.; Ni, G. W.; Tsurimaki, Y.; Huang, Y.; Boriskina, S. V.; Chen, G. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 2018, 9, 5086.

[143]

Zou, M. M.; Zhang, Y.; Cai, Z. R.; Li, C. X.; Sun, Z. Y.; Yu, C. L.; Dong, Z. C.; Wu, L.; Song, Y. L. 3D printing a biomimetic bridge-arch solar evaporator for eliminating salt accumulation with desalination and agricultural applications. Adv. Mater. 2021, 33, e2102443.

[144]

Zhao, W.; Gong, H.; Song, Y.; Li, B.; Xu, N.; Min, X. Z.; Liu, G. L.; Zhu, B.; Zhou, L.; Zhang, X. X. et al. Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv. Funct. Mater. 2021, 31, 2100025.

[145]

Zeng, J.; Wang, Q. Y.; Shi, Y.; Liu, P.; Chen, R. K. Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 2019, 9, 1900552.

[146]

Bian, Y.; Tang, K.; Tian, L. Y.; Zhao, L. J.; Zhu, S. M.; Lu, H.; Yang, Y.; Ye, J. D.; Gu, S. L. Sustainable solar evaporation while salt accumulation. ACS Appl. Mater. Interfaces 2021, 13, 4935–4942.

[147]

Peng, H. Y.; Wang, D.; Fu, S. H. Artificial transpiration with asymmetric photothermal textile for continuous solar-driven evaporation, spatial salt harvesting and electrokinetic power generation. Chem. Eng. J. 2021, 426, 131818.

[148]

Xu, Y.; Guo, Z. Z.; Wang, J.; Chen, Z. H.; Yin, J. C.; Zhang, Z. X.; Huang, J. M.; Qian, J. W.; Wang, X. B. Harvesting solar energy by flowerlike carbon cloth nanocomposites for simultaneous generation of clean water and electricity. ACS Appl. Mater. Interfaces 2021, 13, 27129–27139.

[149]

Peng, H. Y.; Wang, D.; Fu, S. H. Unidirectionally driving nanofluidic transportation via an asymmetric textile pump for simultaneous salt-resistant solar desalination and drenching-induced power generation. ACS Appl. Mater. Interfaces 2021, 13, 38405–38415.

Nano Research Energy
Article number: 9120014
Cite this article:
Wei Z, Wang J, Guo S, et al. Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management. Nano Research Energy, 2022, 1: 9120014. https://doi.org/10.26599/NRE.2022.9120014

8180

Views

2127

Downloads

77

Crossref

84

Scopus

Altmetrics

Received: 06 April 2022
Revised: 01 June 2022
Accepted: 01 June 2022
Published: 12 June 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return