Graphical Abstract

Coupling the bi-functional mechanism with compressive lattice strain might be an effective way to boost the electrocatalysis of platinum (Pt)-based nanoparticles for methanol oxidation reaction (MOR). This strategy weakens the chemisorption of poisoning CO-like intermediates generated during MOR on the active Pt sites by lowering their d-band center. In this context, we herein report the synthesis of ternary copper-tungsten-platinum (CuWPt) nanoalloys with light doping of W element by simply co-reducing their precursors at elevated temperature. In this ternary alloy system, the presence of only small amount of W element not only weakens the chemisorption of CO-like intermediates by lowering the Pt d-band center through compressive lattice strain, but also cleans the active Pt sites by "hydrogen spillover effect", endowing the as-prepared CuWPt nanoalloys at an appropriate Cu/W/Pt ratio with good activity for MOR. In specific, the ternary CuWPt alloy nanoparticles at a Cu/W/Pt molar ratio of 21/4/75 show a specific activity of 2.5 mA·cm−2 and a mass activity of 2.11 A·mg−1 with a better durability, outperforming those ternary CuWPt alloy nanoparticles at other Cu/W/Pt ratios, binary CuPt alloys and commercial Pt/C catalyst as well as a large number of reported Pt-based electrocatalysts. In addition, a single direct methanol fuel cell (DMFC) assembled using ternary CuWPt nanoalloys as anodic catalysts shows a power density of 24.3 mW·cm−2 and an open-circle voltage of 0.6 V, also much higher than those of the single DMFC assembled from commercial Pt/C catalysts.
Xia, Z. X.; Zhang, X. M.; Sun, H.; Wang, S. L.; Sun, G. Q. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy 2019, 65, 104048.
Gao, Y. J.; Liu, J. L.; Bashir S. Electrocatalysts for direct methanol fuel cells to demonstrate China's renewable energy renewable portfolio standards within the framework of the 13th five-year plan. Catal. Today 2021, 374, 135–153.
Kaur, A.; Kaur, G.; Singh, P. P.; Kaushal, S. Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: A review. Int. J. Hydrogen Energy 2021, 46, 15820–15849.
Antolini, E. Formation of carbon-supported PtM alloys for low temperature fuel cells: A review. Mater. Chem. Phys. 2003, 78, 563–573.
Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95–110.
Wasmus, S.; Küver, A. Methanol oxidation and direct methanol fuel cells: A selective review. J. Electroanal. Chem. 1999, 461, 14–31.
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.
Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.
Feng, Y.; Liu, H.; Yang, J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Sci. Adv. 2017, 3, e1700580.
Yang, N. W.; Chen, D.; Cui, P. L.; Lu, T. Y.; Liu, H.; Hu, C. Q.; Xu, L.; Yang, J. Heterogeneous nanocomposites consisting of Pt3Co alloy particles and CoP2 nanorods towards high-efficiency methanol electro-oxidation. SmartMat 2021, 2, 234–245.
Yang, N. W.; Hu, Z. Y.; Song, J.; Lu, T. Y.; Cui, P. L.; Xu, L.; Liu, H.; Yang, J. Electron density regulation of Pt-Co nanoalloys via P incorporation towards methanol electrooxidation. Mater. Adv. 2022, 3, 4268–4277.
Mukerjee, S.; Urian, R. C. Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: Electrochemical and in situ synchrotron spectroscopy. Electrochim. Acta 2002, 47, 3219–3231.
Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E.; Ha, H. Y.; Hong, S. A.; Kim, H.; Wieckowski, A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 2002, 106, 1869–1877.
Roth, C.; Papworth, A. J.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J. A Pt/Ru nanoparticulate system to study the bifunctional mechanism of electrocatalysis. J. Electroanal. Chem. 2005, 581, 79–85.
Lu, S. L.; Eid, K.; Ge, D. H.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9, 1033–1039.
Huang, H. H.; Hu, X. L.; Zhang, J. B.; Su, N.; Cheng, J. X. Facile fabrication of platinum-cobalt alloy nanoparticles with enhanced electrocatalytic activity for a methanol oxidation reaction. Sci. Rep. 2017, 7, 45555.
Liu, H.; Li, C. Y.; Chen, D.; Cui, P. L.; Ye, F.; Yang, J. Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction. Sci. Rep. 2017, 7, 11421.
Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao. M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.
Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B: Environ. 2019, 246, 277–283.
Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088–3097.
Wang, D. D.; Chen, Z. W.; Huang, Y. C.; Li, W.; Wang, J.; Lu, Z. L.; Gu, K. Z.; Wang, T. H; Wu, Y. J.; Chen, C. et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci. China Mater. 2021, 64, 2454–2466.
Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.
Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.
Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.
Wu, X. Q.; Jiang, Y.; Yan, Y. C.; Li, X.; Luo, S.; Huang, J. B.; Li, J. J.; Shen, R.; Yang, D. R.; Zhang, H. Tuning surface structure of Pd3Pb/Ptn Pb nanocrystals for boosting the methanol oxidation reaction. Adv. Sci. 2019, 6, 1902249.
Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.
Jeon, T. Y.; Yu, S. H.; Yoo, S. J.; Park, H. Y.; Kim, S. Y. Electrochemical determination of the degree of atomic surface roughness in Pt-Ni alloy nanocatalysts for oxygen reduction reaction. Carbon Energy 2021, 3, 375–383.
Liu, D. Y.; Zeng, Q.; Liu, H.; Hu, C. Q.; Chen, D.; Xu, L.; Yang, J. Combining the core–shell construction with an alloying effect for high efficiency ethanol electrooxidation. Cell Rep. Phys. Sci. 2021, 2, 100357.
Li, C.; Chen, X. B.; Zhang, L. H.; Yan, S. H.; Sharma, A.; Zhao, B.; Kumbhar, A.; Zhou, G. W.; Fang, J. Y. Synthesis of core@shell Cu-Ni@Pt-Cu Nano-octahedra and their improved MOR activity. Angew. Chem., Int. Ed. 2021, 60, 7675–7680.
Liao, Y.; Yu, G.; Zhang, Y.; Guo, T. T.; Chang, F. F.; Zhong, C. J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J. Phys. Chem. C 2016, 120, 10476–10484.
Cao, J. Y.; Du, Y. Y.; Dong, M. M.; Chen, Z. D.; Xu, J. Template-free synthesis of chain-like PtCu nanowires and their superior performance for oxygen reduction and methanol oxidation reaction. J. Alloys Compd. 2018, 747, 124–130.
Kuo, C. S.; Lyu, L. M.; Sia, R. F.; Lin, H. M.; Sneed, B. T.; Chen, C. F.; Chang, J.; Chiu, T. W.; Chuang, Y. C.; Kuo, C. H. Ultrathin octahedral CuPt nanocages obtained by facet transformation from rhombic dodecahedral core–shell nanocrystals. ACS Sustainable Chem. Eng. 2020, 8, 10544–10553.
Umeda, M.; Ojima, H.; Mohamedi, M.; Uchida, I. Methanol electrooxidation at Pt-Ru-W sputter deposited on Au substrate. J. Power Sources 2004, 136, 10–15.
Zeng, J. H.; Lee, J. Y. Ruthenium-free, carbon-supported cobalt and tungsten containing binary & ternary Pt catalysts for the anodes of direct methanol fuel cells. Int. J. Hydrogen Energy 2007, 32, 4389–4396.
Ji, Z. Y.; Shen, X. P.; Zhu, G. X.; Chen, K. M.; Fu, G. H.; Tong, L. Enhanced electrocatalytic performance of Pt-based nanoparticles on reduced graphene oxide for methanol oxidation. J. Electroanal. Chem. 2012, 682, 95–100.
Wang, Z. B.; Zuo, P. J.; Yin, G. P. Effect of W on activity of Pt-Ru/C catalyst for methanol electrooxidation in acidic medium. J. Alloys Compd. 2009, 479, 395–400.
Micoud, F.; Maillard, F.; Bonnefont, A.; Job, N.; Chatenet, M. The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOX vs. Pt/C. Phys. Chem. Chem. Phys. 2010, 12, 1182–1193.
Jeon, M. K.; Lee, K. R.; Jeon, H. J.; McGinn, P. J.; Kang, K. H.; Park, G. I. Quaternary Pt2Ru1Fe1M1/C (M = Ni, Mo, or W) catalysts for methanol electro-oxidation reaction. Korean J. Chem. Eng. 2015, 32, 206–215.
Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem., Int. Ed. 2005, 44, 2080–2084.
Yang, J. H.; Chen, X. J.; Ye, F.; Wang, C. X.; Zheng, Y. G.; Yang, J. Core–shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect. J. Mater. Chem. 2011, 21, 9088–9094.
Lee, K.; Savadogo, O.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3d transition metal alloys for direct methanol fuel cells. J. Electrochem. Soc. 2006, 153, A20.
Kumar, S.; Zou, S. Z. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: Effects of film thickness. Langmuir 2007, 23, 7365–7371.
Chen, D.; Wang, Y. L.; Liu, D. Y.; Liu, H.; Qian, C.; He, H. Y.; Yang, J. Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. Carbon Energy 2020, 2, 443–451.
Liu, P.; Nørskov, J. K. Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 2001, 3, 3814–3818.
Deming, C. P.; Zhao, A.; Song, Y.; Liu, K.; Khan, M. M.; Yates, V. M.; Chen, S. W. Alkyne-protected AuPd alloy nanoparticles for electrocatalytic reduction of oxygen. ChemElectroChem 2015, 2, 1719–1727.
Antolini, E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2009, 2, 915–931.
Ren, M. J.; Zhou, Y.; Tao, F. F.; Zou, Z. Q.; Akins, D. L.; Yang, H. Controllable modification of the electronic structure of carbon-supported core–shell Cu@Pd catalysts for formic acid oxidation. J. Phys. Chem. C 2014, 118, 12669–12675.
Kobayashi, D.; Kobayashi, H.; Wu, D. S.; Okazoe, S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y. et al. Significant enhancement of hydrogen evolution reaction activity by negatively charged Pt through light doping of W. J. Am. Chem. Soc. 2020, 142, 17250–17254.
Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.