AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent status and future perspectives of ultracompact and customizable micro-supercapacitors

Sen Wang1Jiaxin Ma1,3Xiaoyu Shi1Yuanyuan Zhu1Zhong-Shuai Wu1,2( )
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Ultracompact and customizable micro-supercapacitors (MSCs) are highly demanded for powering microscale electronics of 5G and Internet of Things technologies. So far, tremendous efforts have been concentrated on fabricating high-performance MSCs; however, compatible fabrication and monolithic integration of MSCs with microelectronic systems still remains a huge challenge taking into full consideration the factors such as electrode film fabrication, high-resolution microelectrode pattern, and electrolyte precise deposition. In this review, we summarize the recent advances of ultrasmall and integrated MSCs with tunable performance and customizable function, including key microfabrication technologies for patterning microelectrodes with superior resolution, precise deposition of customized electrolytes in an extremely small space, and feasible strategies for improving electrochemical performance by constructing thick microelectrodes and special electrode structure. Finally, the related challenges and key prospects of ultracompact and customizable MSCs, including compatible microfabrication methods for electrode materials and films, patterning microelectrodes, customizing shape-conformable electrolytes, performance optimization, and efficient integration with microelectronic systems, are put forward for further promoting their practical application.

References

[1]

Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010, 328, 480–483.

[2]

Gates, B. D. Flexible electronics. Science 2009, 323, 1566–1567.

[3]

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

[4]

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

[5]

Zheng, S. H.; Wang, H.; Das, P.; Zhang, Y.; Cao, Y. X.; Ma, J. X.; Liu, S. Z.; Wu, Z. S. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 2021, 33, 2005449.

[6]

Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

[7]

Yu, D. S.; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562.

[8]

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

[9]

Wen, Z.; Yeh, M. H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. N.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.

[10]

Hashemi, S. A.; Ramakrishna, S.; Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743.

[11]

Xu, J. T.; Chen, Y. H.; Dai, L. M. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 2015, 6, 8103.

[12]

Li, Y.; Zhu, M. S.; Bandari, V. K.; Karnaushenko, D. D.; Karnaushenko, D.; Zhu, F.; Schmidt, O. G. On-chip batteries for dust-sized computers. Adv. Energy Mater. 2022, 12, 2103641.

[13]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

[14]

Zhu, R. C. Toward fully processable micro-supercapacitors. Joule 2021, 5, 2257–2258.

[15]

Yang, C. Q.; Schellhammer, K. S.; Ortmann, F.; Sun, S.; Dong, R. H.; Karakus, M.; Mics, Z.; Löffler, M.; Zhang, F.; Zhuang, X. D. et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance. Angew. Chem., Int. Ed. 2017, 56, 3920–3924.

[16]

Wang, S.; Wu, Z. S.; Zheng, S. H.; Zhou, F.; Sun, C. L.; Cheng, H. M.; Bao, X. H. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano 2017, 11, 4283–4291.

[17]

Wang, S.; Wu, Z. S.; Zhou, F.; Shi, X. Y.; Zheng, S. H.; Qin, J. Q.; Xiao, H.; Sun, C. L.; Bao, X. H. All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co(OH)2 nanoflowers. npj 2D Mater. Appl. 2018, 2, 7.

[18]

Lobo, D. E.; Banerjee, P. C.; Easton, C. D.; Majumder, M. Miniaturized supercapacitors: Focused ion beam reduced graphene oxide supercapacitors with enhanced performance metrics. Adv. Energy Mater. 2015, 5, 1500665.

[19]

Ferris, A.; Reig, B.; Eddarir, A.; Pierson, J. F.; Garbarino, S.; Guay, D.; Pech, D. Atypical properties of FIB-patterned RuOX nanosupercapacitors. ACS Energy Lett. 2017, 2, 1734–1739.

[20]

Cutress, I. J.; Compton, R. G. Theory of square, rectangular, and microband electrodes through explicit GPU simulation. J. Electroanal. Chem. 2010, 645, 159–166.

[21]

Zhuang, P. Y.; Sun, Y. Y.; Li, L.; Chee, M. O. L.; Dong, P.; Pei, L. Y.; Chu, H.; Sun, Z. Z.; Shen, J. F.; Ye, M. X. et al. FIB-patterned nano-supercapacitors: Minimized size with ultrahigh performances. Adv. Mater. 2020, 32, 1908072.

[22]

Pei, L.Y.; Zhuang, P. Y.; Sun, Y. Y.; Zhang, X.; Qiao, H. H.; Zhu, K. Y.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Nanosupercapacitors with fractal structures: Searching designs to push the limit. J. Mater. Chem. A 2021, 9, 17400–17414.

[23]
Tang, H. C.; Tian, Y.; Wu, Z. S.; Zeng, Y. J.; Wang, Y.; Hou, Y.; Ye, Z. Z.; Lu, J. G. AC line filter electrochemical capacitors: Materials, morphology, and configuration. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12285.
[24]

Feng, X.; Shi, X. Y.; Ning, J.; Wang, D.; Zhang, J. C.; Hao, Y.; Wu, Z. S. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. eScience 2021, 1, 124–140.

[25]

Qi, D. P.; Liu, Y.; Liu, Z. Y.; Zhang, L.; Chen, X. D. Design of architectures and materials in in-plane micro-supercapacitors: Current status and future challenges. Adv. Mater. 2017, 29, 1602802.

[26]

Wu, Z. S.; Zheng, Y. J.; Zheng, S. H.; Wang, S.; Sun, C. L.; Parvez, K.; Ikeda, T.; Bao, X. H.; Müllen, K.; Feng, X. L. Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance. Adv. Mater. 2017, 29, 1602960.

[27]

Wu, Z. S. Parvez, K.; Feng, X. L.; Müllen, K. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J. Mater. Chem. A 2014, 2, 8288–8293.

[28]

El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

[29]

Maragkaki, S.; Savva, K.; Stratakis, E. Advanced photonic processes for photovoltaic, energy storage, and environmental systems. Adv. Sustainable Syst. 2021, 5, 2000237.

[30]

Wang, Y.; Zhao, Y.; Qu, L. T. Laser fabrication of functional micro-supercapacitors. J. Energy Chem. 2021, 59, 642–665.

[31]

Kim, E.; Lee, B. J.; Maleski, K.; Chae, Y.; Lee, Y.; Gogotsi, Y.; Ahn, C. W. Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes. Nano Energy 2021, 81, 105616.

[32]

Ma, J. X.; Zheng, S. H.; Cao, Y. X.; Zhu, Y. Y.; Das, P.; Wang, H.; Liu, Y.; Wang, J. M.; Chi, L. P.; Liu, S. Z. et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv. Energy Mater. 2021, 11, 2100746.

[33]

Lee, K. H.; Lee, S. S.; Ahn, D. B.; Lee, J.; Byun, D.; Lee, S. Y. Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing. Sci. Adv. 2020, 6, eaaz1692.

[34]

Yun, J.; Lim, Y.; Jang, G. N.; Kim, D.; Lee, S. J.; Park, H.; Hong, S. Y.; Lee, G.; Zi, G.; Ha, J. S. Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy 2016, 19, 401–414.

[35]

Jiang, Q.; Kurra, N.; Maleski, K.; Lei, Y. J.; Liang, H. F.; Zhang, Y. Z.; Gogotsi, Y.; Alshareef, H. N. On-chip MXene microsupercapacitors for AC-line filtering applications. Adv. Energy Mater. 2019, 9, 1901061.

[36]

Sung, J. H.; Kim, S. J.; Lee, K. H. Fabrication of microcapacitors using conducting polymer microelectrodes. J. Power Sources 2003, 124, 343–350.

[37]

Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

[38]

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

[39]

In, J. B.; Hsia, B.; Yoo, J. H.; Hyun, S.; Carraro, C.; Maboudian, R.; Grigoropoulos, C. P. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 2015, 83, 144–151.

[40]

Laszczyk, K. U.; Kobashi, K.; Sakurai, S.; Sekiguchi, A.; Futaba, D. N.; Yamada, T.; Hata, K. Lithographically integrated microsupercapacitors for compact, high performance, and designable energy circuits. Adv. Energy Mater. 2015, 5, 1500741.

[41]

Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P. L. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351, 691–695.

[42]

Lin, Y. J.; Gao, Y.; Fan, Z. Y. Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv. Mater. 2017, 29, 1701736.

[43]

Shen, D. Z.; Zou, G. S.; Liu, L.; Zhao, W. Z.; Wu, A. P.; Duley, W. W.; Zhou, Y. N. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer. ACS Appl. Mater. Interfaces 2018, 10, 5404–5412.

[44]

Zhang, C. J.; Mckeon, L.; Kremer, M. P.; Park, S. H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; Mcevoy, N.; Nerl, H. C. et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.

[45]

Xu, C. Y.; Jiang, L.; Li, X.; Li, C.; Shao, C. X.; Zuo, P.; Liang, M. S.; Qu, L. T.; Cui, T. H. Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. Nano Energy 2020, 67, 104260.

[46]

Yuan, Y. J.; Jiang, L.; Li, X.; Zuo, P.; Xu, C. Y.; Tian, M. Y.; Zhang, X. Q.; Wang, S. M.; Lu, B.; Shao, C. X. et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat. Commun. 2020, 11, 6185.

[47]

Choi, C.; Robert, K.; Whang, G.; Roussel, P.; Lethien, C.; Dunn, B. Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule 2021, 5, 2466–2478.

[48]

Bi, S. S.; Cao, H. M.; Wang, R.; Wan, F.; Niu, Z. Q. In-plane micro-sized energy storage devices: From device fabrication to integration and intelligent designs. J. Energy Chem. 2021, 63, 25–39.

[49]

Wang, M. T.; Zhang, J. Y.; Wang, Y. X.; Lu, Y. F. Material and structural design of microsupercapacitors. J. Solid State Electr. 2022, 26, 313–334.

[50]

Shi, X. Y.; Pei, S. F.; Zhou, F.; Ren, W. C.; Cheng, H. M.; Wu, Z. S.; Bao, X. H. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. Energ. Environ. Sci. 2019, 12, 1534–1541.

[51]

Wang, J. W.; Sun, Q.; Gao, X. J.; Wang, C. H.; Li, W. H.; Holness, F. B.; Zheng, M.; Li, R. Y.; Price, A. D.; Sun, X. H. et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach. ACS Appl. Mater. Interfaces 2018, 10, 39794–39801.

[52]

Li, Q.; Wang, Q. Z.; Li, L. L.; Yang, L. J.; Wang, Y.; Wang, X. H.; Fang, H. T. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv. Energy Mater. 2020, 10, 2000470.

[53]

Zheng, S. H.; Ma, J. M.; Wu, Z. S.; Zhou, F.; He, Y. B.; Kang, F. Y.; Cheng, H. M.; Bao, X. H. All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 2018, 11, 2001–2009.

[54]

Zheng, S. H.; Wu, Z. S.; Zhou, F.; Wang, X.; Ma, J. M.; Liu, C.; He, Y. B.; Bao, X. H. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 2018, 51, 613–620.

[55]

Wu, Z.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

[56]

Kurra, N.; Alhebshi, N. A.; Alshareef, H. N. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv. Energy Mater. 2015, 5, 1401303.

[57]

Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068–1072.

[58]

Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111–4122.

[59]

Meng, C. Z.; Maeng, J.; John, S. W. M.; Irazoqui, P. P. Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices. Adv. Energy Mater. 2014, 4, 1301269.

[60]

Si, W. P.; Yan, C. L.; Chen, Y.; Oswald, S.; Han, L. Y.; Schmidt, O. G. On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOX/Au multilayers. Energy Environ. Sci. 2013, 6, 3218–3223.

[61]

Wang, Y. R.; Sun, L. M.; Xiao, D. Y.; Du, H. H.; Yang, Z. T.; Wang, X. H.; Tu, L. C.; Zhao, C.; Hu, F. J.; Lu, B. G. Silicon-based 3D all-solid-state micro-supercapacitor with superior performance. ACS Appl. Mater. Interfaces 2020, 12, 43864–43875.

[62]

Kim, C.; Kang, D. Y.; Moon, J. H. Full lithographic fabrication of boron-doped 3D porous carbon patterns for high volumetric energy density microsupercapacitors. Nano Energy 2018, 53, 182–188.

[63]

Kim, C.; Moon, J. H. Hierarchical pore-patterned carbon electrodes for high-volumetric energy density micro-supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 19682–19688.

[64]

Yang, W.; He, L.; Tian, X. C.; Yan, M. Y.; Yuan, H.; Liao, X. B.; Meng, J. S.; Hao, Z. M.; Mai, L. Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small 2017, 13, 1700639.

[65]

Wu, Z. S.; Parvez, K.; Winter, A.; Vieker, H.; Liu, X. J.; Han, S.; Turchanin, A.; Feng, X. L.; Müllen, K. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv. Mater. 2014, 26, 4552–4558.

[66]

Wu, Z. S.; Parvez, K.; Li, S.; Yang, S.; Liu, Z. Y.; Liu, S. H.; Feng, X. L.; Müllen, K. Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 2015, 27, 4054–4061.

[67]

Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467.

[68]

Kwon, S.; Kim, G.; Lim, H.; Kim, J.; Choi, K. B.; Lee, J. High performance microsupercapacitors based on a nano-micro hierarchical carbon electrode by direct laser writing. Appl. Phys. Lett. 2018, 113, 243901.

[69]
Wu, Y.; Lin, A. P.; Zhang, J. D.; Zhao, D. J.; Bai, X. J.; Lu, C.; Wang, S. F.; Fan, L. L.; Cao, L.; Liu, S. D. et al. Crumpled and eccentric nanospheres of Ti3C2Tx MXene by aerosol jet printing on heat substrate. Adv. Eng. Mater., in press, DOI: 10.1002/adem.202101556.
[70]

Zhang, J. H.; Zhang, G. X.; Zhou, T.; Sun, S. H. Recent developments of planar micro-supercapacitors: Fabrication, properties, and applications. Adv. Funct. Mater. 2020, 30, 1910000.

[71]

Wang, X. Z.; Zhang, Q. M. On-chip microsupercapacitors: From material to fabrication. Energy Technol. 2019, 7, 1900820.

[72]

Wang, J. H.; Li, F.; Zhu, F.; Schmidt, O. G. Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 2018, 1800367.

[73]
Jiang, L. W.; Dong, D. J.; Lu, Y. C. Design strategies for low temperature aqueous electrolytes. Nano Res. Energy, in press, DOI: 10.26599/NRE.2022.9120003.
[74]

Zheng, S. H.; Huang, H. J.; Dong, Y. F.; Wang, S.; Zhou, F.; Qin, J. Q.; Sun, C. L.; Yu, Y.; Wu, Z. S.; Bao, X. H. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. 2020, 13, 821–829.

[75]

Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.

[76]

Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

[77]

Wang, S.; Zheng, S. H.; Wu, Z. S.; Sun, C. L. Recent advances in graphene-based planar micro-supercapacitors. Sci. Sin. Chim. 2016, 46, 732–744.

[78]

Wu, Z. S.; Feng, X. L.; Cheng, H. M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 2014, 1, 277–292.

[79]

Bai, S. G.; Tang, Y.; Wu, Y. P.; Liu, J. B.; Liu, H. L.; Yuan, W.; Lu, L. S.; Mai, W.; Li, H.; Xie, Y. X. High voltage microsupercapacitors fabricated and assembled by laser carving. ACS Appl. Mater. Interfaces 2020, 12, 45541–45548.

[80]

Patil, S. J.; Park, J. S.; Kim, Y. B.; Lee, D. W. A quasi 2D flexible micro-supercapacitor based on MnO2//NiCo2O4 as a miniaturized energy-storage device. Energy Technol. 2018, 6, 1380–1391.

[81]

Kurra, N.; Hota, M. K.; Alshareef, H. N. Conducting polymer micro-supercapacitors for flexible energy storage and AC line-filtering. Nano Energy 2015, 13, 500–508.

[82]

Zhuang, X. D.; Feng, X. L. Silicon-compatible carbon-based micro-supercapacitors. Angew. Chem., Int. Ed. 2016, 55, 6136–6138.

[83]

Hu, H. B.; Pei, Z. B.; Fan, H. J.; Ye, C. H. 3D interdigital Au/MnO2/Au stacked hybrid electrodes for on-chip microsupercapacitors. Small, 2016, 12, 3059–3069.

[84]

Li, F.; Huang, M.; Wang, J. H.; Qu, J.; Li, Y.; Liu, L. X.; Bandari, V. K.; Hong, Y.; Sun, B. K.; Zhu, M. S. et al. On-chip 3D interdigital micro-supercapacitors with ultrahigh areal energy density. Energy Storage Mater. 2020, 27, 17–24.

[85]

Kuang, Y. D.; Chen, C. J.; Kirsch, D.; Hu, L. B. Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Mater. 2019, 9, 1901457.

[86]

Li, J. H.; Zhu, M. J.; An, Z. L.; Wang, Z. Q.; Toda, M.; Ono, T. Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique. J. Power Sources 2018, 401, 204–212.

[87]

Sha, M.; Zhao, H. P.; Lei, Y. Updated insights into 3D architecture electrodes for micropower sources. Adv. Mater. 2021, 33, 2103304.

[88]

Zheng, S. H.; Shi, X. Y.; Das, P.; Wu, Z. S.; Bao, X. H. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries. Adv. Mater. 2019, 31, 1900583.

[89]

Moitzheim, S.; Balder, J. E.; Ritasalo, R.; Ek, S.; Poodt, P.; Unnikrishnan, S.; De Gendt, S.; Vereecken, P. M. Toward 3D thin-film batteries: Optimal current-collector design and scalable fabrication of TiO2 thin-film electrodes. ACS Appl. Energy Mater. 2019, 2, 1774–1783.

[90]

Wang, X. F.; Yin, Y. J.; Li, X. Y.; You, Z. Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures. J. Power Sources 2014, 252, 64–72.

[91]

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.

[92]

Bounor, B.; Asbani, B.; Douard, C.; Favier, F.; Brousse, T.; Lethien, C. On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Mater. 2021, 38, 520–527.

[93]

Li, X. Q.; Cai, W. H.; The, K. S.; Qi, M. J.; Zang, X. N.; Ding, X. R.; Cui, Y.; Xie, Y. X.; Wu, Y. C.; Ma, H. Y. et al. High-voltage flexible microsupercapacitors based on laser-induced graphene. ACS Appl. Mater. Interfaces 2018, 10, 26357–26364.

[94]
Choi, C. S. On-chip integrated electrochemical energy storage devices based on photopatternable solid electrolytes. Ph. D. Dissertation, University of California, Los Angeles, 2021.
[95]

Choi, C. S.; Whang, G. J.; Mcneil, P. E.; Dunn, B. S. Photopatternable porous separators for micro-electrochemical energy storage systems. Adv. Mater. 2022, 34, 2108792.

[96]

Ma, Z. C.; Zhang, Y. L.; Han, B.; Chen, Q. D.; Sun, H. B. Femtosecond-laser direct writing of metallic micro/nanostructures: From fabrication strategies to future applications. Small Methods 2018, 2, 1700413.

[97]

Zhang, Y. L.; Guo, L.; Wei, S.; He, Y. Y.; Xia, H.; Chen, Q. D.; Sun, H. B.; Xiao, F. S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15–20.

[98]

Wang, X. Z.; Zhang, Q. M. Recent progress on laser fabrication of on-chip microsupercapacitors. J. Energy Storage 2021, 34, 101994.

[99]

Cheng, C.; Wang, S. T.; Wu, J.; Yu, Y. C.; Li, R. Z.; Eda, S.; Chen, J. G.; Feng, G. Y.; Lawrie, B.; Hu, A. M. Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 2016, 8, 17784–17792.

[100]

Wang, S. T.; Yu, Y. C.; Li, R. Z.; Feng, G. Y.; Wu, Z. L.; Compagnini, G.; Gulino, A.; Feng, Z. L.; Hu, A. M. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochim. Acta 2017, 241, 153–161.

[101]

Thekkekara, L. V.; Chen, X.; Gu, M. Two-photon-induced stretchable graphene supercapacitors. Sci. Rep. 2018, 8, 11722.

[102]

Wang, S. T.; Yu, Y. C.; Luo, S.; Cheng, X. P.; Feng, G. Y.; Zhang, Y. F.; Wu, Z. L.; Compagnini, G.; Pooran, J.; Hu, A. M. All-solid-state supercapacitors from natural lignin-based composite film by laser direct writing. Appl. Phys. Lett. 2019, 115, 083904.

[103]

Qin, G.; Fan, L. D.; Watanabe, A. Formation of indium tin oxide film by wet process using laser sintering. J. Mater. Process. Technol. 2016, 227, 16–23.

[104]

Hales, J. M.; Khachatrian, A.; Warner, J.; Buchner, S.; Ildefonso, A.; Tzintzarov, G. N.; Nergui, D.; Monahan, D. M.; LaLumondiere, S. D.; Cressler, J. D. et al. Using bessel beams and two-photon absorption to predict radiation effects in microelectronics. Opt. Express 2019, 27, 37652–37666.

[105]

Malinský, P.; Macková, A.; Florianová, M.; Cutroneo, M.; Hnatowicz, V.; Boháčová, M.; Szőkölová, K.; Böttger, R.; Sofer, Z. The structural and compositional changes of graphene oxide induced by irradiation with 500 keV helium and gallium ions. Phys. Status Solidi B 2019, 256, 1800409.

[106]

Syed, A. W.; Mohammad, M. A. Laser scribed graphene-based flexible microsupercapacitors with fractal design. IEEE Access 2021, 9, 154957–154964.

[107]

Hota, M. K.; Jiang, Q.; Mashraei, Y.; Salama, K. N.; Alshareef, H. N. Fractal electrochemical microsupercapacitors. Adv. Electron. Mater. 2017, 3, 1700185.

[108]

Huang, K. H.; Lin, C. T.; Chen, Y. T.; Yang, Y. J. J. Study of fractal electrode designs for buckypaper-based micro-supercapacitors. J. Appl. Phys. 2019, 125, 014902.

[109]

Ahn, D. B.; Lee, S. S.; Lee, K. H.; Kim, J. H.; Lee, J. W.; Lee, S. Y. Form factor-free, printed power sources. Energy Storage Mater. 2020, 29, 92–112.

[110]

Choi, K. H.; Ahn, D. B.; Lee, S. Y. Current status and challenges in printed batteries: Toward form factor-free, monolithic integrated power sources. ACS Energy Lett. 2018, 3, 220–236.

[111]

Shi, X. Y.; Das, P.; Wu, Z. S. Digital microscale electrochemical energy storage devices for a fully connected and intelligent world. ACS Energy Lett. 2022, 7, 267–281.

[112]

Deiner, L. J.; Reitz, T. L. Inkjet and aerosol jet printing of electrochemical devices for energy conversion and storage. Adv. Eng. Mater. 2017, 19, 1600878.

[113]

Onses, M. S.; Sutanto, E.; Ferreira, P. M.; Alleyne, A. G.; Rogers, J. A. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 2015, 11, 4237–4266.

[114]

Choi, K. H.; Yoo, J.; Lee, C. K.; Lee, S. Y. All-inkjet-printed, solidstate flexible supercapacitors on paper. Energy Environ. Sci. 2016, 9, 2812–2821.

[115]

Li, L.; Secor, E. B.; Chen, K. S.; Zhu, J.; Liu, X. L.; Gao, T. Z.; Seo, J. W. T.; Zhao, Y. C.; Hersam, M. C. High-performance solid-state supercapacitors and microsupercapacitors derived from printable graphene inks. Adv. Energy Mater. 2016, 6, 1600909.

[116]

Delekta, S. S.; Laurila, M. M.; Mäntysalo, M.; Li, J. T. Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors. Nano-Micro Lett. 2020, 12, 40.

Nano Research Energy
Article number: 9120018
Cite this article:
Wang S, Ma J, Shi X, et al. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Research Energy, 2022, 1: 9120018. https://doi.org/10.26599/NRE.2022.9120018

8093

Views

1770

Downloads

74

Crossref

74

Scopus

Altmetrics

Received: 24 May 2022
Revised: 16 June 2022
Accepted: 16 June 2022
Published: 24 June 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return