AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN

Defeng Qi1,2,§Fang Lv2,§Tianran Wei1,§Mengmeng Jin2Ge Meng3Shusheng Zhang4Qian Liu5Wenxian Liu6Dui Ma1Mohamed S. Hamdy7Jun Luo2Xijun Liu1( )
MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia

§ Defeng Qi, Fang Lv, and Tianran Wei contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Electrocatalytic NO reduction reaction to generate NH3 under ambient conditions offers an attractive alternative to the energy-extensive Haber–Bosch route; however, the challenge still lies in the development of cost-effective and high-performance electrocatalysts. Herein, nanoporous VN film is first designed as a highly selective and stable electrocatalyst for catalyzing reduction of NO to NH3 with a maximal Faradaic efficiency of 85% and a peak yield rate of 1.05 × 10–7 mol·cm–2·s–1 (corresponding to 5,140.8 μg·h–1·mgcat.–1) at –0.6 V vs. reversible hydrogen electrode in acid medium. Meanwhile, this catalyst maintains an excellent activity with negligible current density and NH3 yield rate decays over 40 h. Moreover, as a proof-of-concept of Zn–NO battery, it delivers a high power density of 2.0 mW·cm–2 and a large NH3 yield rate of 0.22 × 10–7 mol·cm–2·s–1 (corresponding to 1,077.1 μg·h–1·mgcat.–1), both of which are comparable to the best-reported results. Theoretical analyses confirm that the VN surface favors the activation and hydrogenation of NO by suppressing the hydrogen evolution. This work highlights that the electrochemical NO reduction is an eco-friendly and energy-efficient strategy to produce NH3.

Electronic Supplementary Material

Download File(s)
nre-1-1-9120022_ESM.pdf (2.3 MB)

References

[1]

Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

[2]

Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.

[3]

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

[4]

Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y. L.; Guo, H. R.; Li, Y. H.; Gao, P. et al. Electrocatalytic hydrogenation of N2 to NH3 by MnO: Experimental and theoretical investigations. Adv. Sci. 2019, 6, 1801182.

[5]

Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420–427.

[6]

Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction—Strategies to tackle the selectivity challenge. Small Methods 2019, 3, 1800337.

[7]

Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

[8]

Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

[9]

Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2021, 11, 509–516.

[10]

Wang, Y.; Chen, A. R.; Lai, S. H.; Peng, X. Y.; Zhao, S. Z.; Hu, G. Z.; Qiu, Y.; Ren, J. Q.; Liu, X. J.; Luo, J. Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. J. Catal. 2020, 381, 78–83.

[11]

Chen, Y.; Guo, R. J.; Peng, X. Y.; Wang, X. Q.; Liu, X. J.; Ren, J. Q.; He, J.; Zhuo, L. C.; Sun, J. Q.; Liu, Y. F. et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 2020, 14, 6938–6946.

[12]

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

[13]

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

[14]

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

[15]

Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022, 15, 3886–3893.

[16]

Yao, S.; Liu, J. W.; Liu, F. Y.; Wang, B.; Ding, Y.; Li, L.; Liu, C.; Huang, F.; Fang, J. Y.; Lin, Z. et al. Robust route to photocatalytic nitrogen fixation mediated by capitalizing on defect-tailored InVO4 nanosheets. Environ. Sci. Nano 2022, 9, 1996–2005.

[17]

Liu, J. D.; Wei, Z. X.; Dou, Y. H.; Feng, Y. Z.; Ma, J. M. Ru-doped phosphorene for electrochemical ammonia synthesis. Rare Met. 2020, 39, 874–880.

[18]

Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.

[19]

Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

[20]

Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.

[21]

Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

[22]

Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 2018, 48, 217–226.

[23]

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μgNH3·mgcat.–1·h–1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

[24]

Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S. Z.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

[25]

Yan, Y.; Liang, S.; Wang, X.; Zhang, M. Y.; Hao, S. M.; Cui, X.; Li, Z. W.; Lin, Z. Q. Robust wrinkled MoS2/N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries. Proc. Natl. Acad. Sci. USA 2021, 118, e2110036118.

[26]

Liu, M. K.; Zhang, P.; Qu, Z. H.; Yan, Y.; Lai, C.; Liu, T. X.; Zhang, S. Q. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat. Commun. 2019, 10, 3917.

[27]

Yan, Y.; Zhang, P.; Qu, Z. H.; Tong, M. M.; Zhao, S.; Li, Z. W.; Liu, M. K.; Lin, Z. Q. Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery. Nano Lett. 2020, 20, 7662–7669.

[28]

Hao, S. M.; Liang, S.; Sewell, C. D.; Li, Z. L.; Zhu, C. Z.; Xu, J.; Lin, Z. Q. Lithium-conducting branched polymers: New paradigm of solid-state electrolytes for batteries. Nano Lett. 2021, 21, 7435–7447.

[29]

Tan, J. C.; Li, D.; Liu, Y. Q.; Zhang, P.; Qu, Z. H.; Yan, Y.; Hu, H.; Cheng, H. Y.; Zhang, J. X.; Dong, M. Y. et al. A self-supported 3D aerogel network lithium–sulfur battery cathode: Sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. J. Mater. Chem. A 2020, 8, 7980–7990.

[30]
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120010.
[31]

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

[32]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[33]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem. 2022, 134, e202202087.

[34]

Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun., 2022, 58, 8097–8100.

[35]

Wang, X. Z.; Liu, S.; Zhang, H.; Zhang, S. S.; Meng, G.; Liu, Q.; Sun, Z. Y.; Luo, J.; Liu, X. J. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem. Commun., 2022, 58, 7654–7657.

[36]
Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120017.
[37]
Hao, A. H.; Wan, X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Inorganic microporous membranes for hydrogen separation: Challenges and solutions. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120013.
[38]
Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120015.
[39]

Zhang, R.; Zhang, Y.; Ren, X.; Cui, G. W.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 2018, 6, 9545–9549.

[40]

Zhang, X. P.; Kong, R. M.; Du, H. T.; Xia, L.; Qu, F. L. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem. Commun. 2018, 54, 5323–5325.

[41]

Liu, X. J.; Xi, W.; Li, C.; Li, X. B.; Shi, J.; Shen, Y. L.; He, J.; Zhang, L. H.; Xie, L.; Sun, X. M. et al. Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 2018, 44, 371–377.

[42]

Jin, M. M.; Liu, W.; Sun, J. Q.; Wang, X. Z.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res. 2022, 15, 5842–5847.

[43]

Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

[44]

Dewangan, K.; Patil, G. P.; Kashid, R. V.; Bagal, V. S.; More, M. A.; Joag, D. S.; Gajbhiye, N. S.; Chavan, P. G. V2O5 precursor-templated synthesis of textured nanoparticles based VN nanofibers and their exploration as efficient field emitter. Vacuum 2014, 109, 223–229.

[45]

Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y. S.; Xu, B. J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387–13391.

[46]

Du, C.; Gao, Y. J.; Wang, J. G.; Chen, W. Achieving 59% Faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn-N2 battery by facilely regulating the surface mass transport on metallic copper. Chem. Commun. 2019, 55, 12801–12804.

[47]

Lv, X. W.; Liu, X. L.; Gao, L. J.; Liu, Y. P.; Yuan, Z. Y. Iron-doped titanium dioxide hollow nanospheres for efficient nitrogen fixation and Zn-N2 aqueous batteries. J. Mater. Chem. A 2021, 9, 4026–4035.

[48]
Meng, G.; Jin, M.; Wei, T.; Liu, Q.; Zhang, S.; Peng X.; Luo, J.; Liu, X. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia, Nano Res., in press, https://doi.org/10.1007/s12274-022-4747-y.
[49]

Zhang, H.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics, 2022, 28, 3927–3934.

[50]

Hou, J. R.; Peng, X. Y.; Sun, J. Q.; Zhang, S. S.; Liu, Q.; Wang, X. Z.; Luo, J.; Liu, X. J. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg. Chem. Front. 2022, 9, 3047–3058.

[51]
Payandeh, S.; Strauss, F.; Mazilkin, A.; Kondrakov, A.; Brezesinski, T. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120016.
Nano Research Energy
Article number: e9120022
Cite this article:
Qi D, Lv F, Wei T, et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Research Energy, 2022, 1: e9120022. https://doi.org/10.26599/NRE.2022.9120022

9102

Views

1819

Downloads

209

Crossref

208

Scopus

Altmetrics

Received: 28 May 2022
Revised: 29 June 2022
Accepted: 30 June 2022
Published: 07 July 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return