AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

High-performance large-area perovskite photovoltaic modules

Liang Chu1 ( )Shuaibo Zhai2Waqar Ahmad3Jing Zhang4( )Yue Zang1Wensheng Yan1( )Yongfang Li5
Institute of Carbon Neutrality and New Energy & School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
School of Electronic and Optic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Department of Physics, Faculty of Sciences, University of Sialkot, Punjab 51310, Pakistan
School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science & Engineering, Changzhou University, Changzhou 213164, China
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

Perovskite solar cells (Pero-SCs) exhibited a bright future for the next generation of photovoltaic technology because of their high power conversion efficiency (PCE), low cost, and simple solution process. The certified laboratory-scale PCE has reached 25.7% referred to small scale (< 0.1 cm2) of Pero-SCs. However, with the increase of the area to module scale, the PCE drops dramatically mainly due to the inadequate regulation of growing large-area perovskite films. Therefore, there is a dire need to produce high-quality perovskite films for large-area photovoltaic modules. Herein, we summarize the recent advances in perovskite photovoltaic modules (PPMs) with particular attention paid to the coating methods, as well as the growth regulation of the high-quality and large-area perovskite films. Furthermore, this study encompasses future development directions and prospects for PPMs.

References

[1]
National Renewable Energy Laboratory. Best research-cell efficiency chart [Online]. 2022. https://www.nrel.gov/pv/cell-efficiency.html (accessed 24 June 2022).
[2]

Chu, L. Pseudohalide anion engineering for highly efficient and stable perovskite solar cells. Matter 2021, 4, 1762–1764.

[3]

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

[4]

Lei, Y.; Li, Y.; Lu, C.; Yan, Q.; Wu, Y.; Babbe, F.; Gong, H.; Zhang, S.; Zhou, J. et al. Perovskite superlattices with efficient carrier dynamics, Nature 2022, 608, 317323.

[5]

Li, Z.; Li, B.; Wu, X.; Sheppard, S. A.; Zhang, S. F.; Gao, D. P.; Long, N. J.; Zhu, Z. L. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022, 376, 416–420.

[6]

Yang, J.; Chu, L.; Hu, R. Y.; Liu, W.; Liu, N. J.; Ma, Y. H.; Ahmad, W.; Li, X. A. Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C3N4 nanosheets. Nano Res. 2021, 14, 2139–2144.

[7]

Li, X.; Bi, D. Q.; Yi, C. Y.; Décoppet, J. D.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353, 58–62.

[8]

Li, Z.; Wang, X.; Wang, Z; Shao, Z.; Hao, L.; Rao, Y.; Chen, C.; Liu, D.; Zhao, Q.; Sun, X. et al. Ammonia for post-healing of formamidinium-based perovskite films. Nat. Commun. 2022, 13, 4417.

[9]
National Renewable Energy Laboratory (NREL). Champion photovoltaic module efficiency chart [Online]. 2022. https://www.nrel.gov/pv/module-efficiency.html (accessed 24 June 2022).
[10]

Li, C. P.; Yin, J.; Chen, R. H.; Lv, X. D.; Feng, X. X.; Wu, Y. Y.; Cao, J. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with > 18% efficiency. J. Am. Chem. Soc. 2019, 141, 6345–6351.

[11]

Liu, X. H.; Chen, M.; Zhang, Y.; Xia, J. X.; Yin, J. Z.; Li, M.; Brooks, K. G.; Hu, R. Y.; Gao, X. X.; Kim, Y. H. et al. High-efficiency perovskite photovoltaic modules achieved via cesium doping. Chem. Eng. J. 2022, 431, 133713.

[12]

Chu, L.; Liu, W.; Qin, Z. F.; Zhang, R.; Hu, R. Y.; Yang, J.; Yang, J. P.; Li, X. A. Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes. Sol. Energy Mater. Sol. Cells 2018, 178, 164–169.

[13]

Liu, N. J.; Chu, L.; Ahmad, W.; Hu, R. Y.; Luan, R. F.; Liu, W.; Yang, J.; Ma, Y. H.; Li, X. A. Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells. J. Power Sources 2021, 499, 229970.

[14]

Zhu, J; Qian, Y; Li. Z; Gong, O. Y.; An, Z.; Liu, Q.; Choi, J. H.; Guo, H.; Yoo, P. J.; Kim, D. H. et al. Defect healing in FAPb(I1−xBrx)3 perovskites: Multifunctional fluorinated sulfonate surfactant anchoring enables > 21% modules with improved operation stability. Adv. Energy Mater 2022, 12, 2200632.

[15]

Kim, Y. Y.; Yang, T. Y.; Suhonen, R.; Kemppainen, A.; Hwang, K.; Jeon, N. J.; Seo, J. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat. Commun. 2020, 11, 5146.

[16]

Turren-Cruz, S. H.; Hagfeldt, A.; Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 2018, 362, 449–453.

[17]

Chu, L.; Ding, L. Self-assembled monolayers in perovskite solar cell. J. Semiconductors, 2021, 42, 090202.

[18]

Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

[19]

Sugimoto, T.; Shiba, F.; Sekiguchi, T.; Itoh, H. Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: Silver chloride. Colloids Surf. A: Physicochem. Eng. Aspects 2000, 164, 183–203.

[20]

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

[21]

Lee, J. W.; Lee, D. K.; Jeong, D. N.; Park, N. G. Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1807047.

[22]

Zeng, L. X.; Chen, S.; Forberich, K.; Brabec, C. J.; Mai, Y. H.; Guo, F. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy Environ. Sci. 2020, 13, 4666–4690.

[23]

Abraham, F. F. Homogeneous Nucleation Theory; Academic Press: New York, 1974.

[24]

Lee, K. M.; Lin, C. J.; Liou, B. Y.; Yu, S. M.; Hsu, C. C.; Suryanarayanan, V.; Wu, M. C. Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 172, 368–375.

[25]

Xu, Y. B.; Wang, S. B.; Gu, L. L.; Yuan, N. Y.; Ding, J. N. Structural design for efficient perovskite solar modules. Sol. RRL 2021, 5, 2000733.

[26]

Küffner, J.; Wahl, T.; Schultes, M.; Hanisch, J.; Zillner, J.; Ahlswede, E.; Powalla, M. Nanoparticle wetting agent for gas stream-assisted blade-coated inverted perovskite solar cells and modules. ACS Appl. Mater. Interfaces 2020, 12, 52678–52690.

[27]

Xu, Z.; Zeng, L.; Hu, J.; Wang, Z.; Zhang, P.; Brabec, C. J.; Forberich, K.; Mai, Y.; Guo. F. Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices. Nano Energy 2022, 91, 106658.

[28]

Im, J. H.; Kim, H. S.; Park, N. G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2014, 2, 081510.

[29]

Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung, H. S. Spin-coating process for 10 cm × 10 cm perovskite solar modules enabled by self-assembly of SnO2 nanocolloids. ACS Energy Lett. 2019, 4, 1845–1851.

[30]

Bu, T. L.; Liu, X. P.; Li, J.; Huang, W. C.; Wu, Z. L.; Huang, F. Z.; Cheng, Y. B.; Zhong, J. Dynamic antisolvent engineering for spin coating of 10 × 10 cm2 perovskite solar module approaching 18%. Sol. RRL 2020, 4, 1900263.

[31]

Zhao, P. J.; Kim, B. J.; Ren, X. D.; Lee, D. G.; Bang, G. J.; Jeon, J. B.; Kim, W. B.; Jung, H. S. Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells. Adv. Mater. 2018, 30, 1802763.

[32]

Liu, C.; Yang, Y.; Rakstys, K.; Mahata, A.; Franckevicius, M.; Mosconi, E.; Skackauskaite, R.; Ding, B.; Brooks, K. G.; Usiobo, O. J. et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 2021, 12, 6394.

[33]

Kim, J. H.; Williams, S. T.; Cho, N.; Chueh, C. C.; Jen, A. K. Y. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 2015, 5, 1401229.

[34]

Yang, M. J.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y. F.; Berry, J. J.; van Hes, M. F. A. M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2017, 2, 17038.

[35]

Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566.

[36]

Deng, Y. H.; Van Brackle, C. H.; Dai, X. Z.; Zhao, J. J.; Chen, B.; Huang, J. S. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 2019, 5, aax7537.

[37]

Dai, X. Z.; Deng, Y. H.; Van Brackle, C. H.; Chen, S. S.; Rudd, P. N.; Xiao, X.; Lin, Y.; Chen, B.; Huang, J. S. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 2020, 10, 1903108.

[38]

Chen, B.; Yu, Z. J.; Manzoor, S.; Wang, S.; Weigand, W.; Yu, Z. H.; Yang, G.; Ni, Z. Y.; Dai, X. Z.; Holman, Z. C. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 2020, 4, 850–864.

[39]

Chen, S. S.; Dai, X. Z.; Xu, S.; Jiao, H. Y.; Zhao, L.; Huang, J. S. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373, 902–907.

[40]

Deng, Y. H.; Wang, Q.; Yuan, Y. B.; Huang, J. S. Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Mater. Horiz. 2015, 2, 578–583.

[41]

Vak, D.; Hwang, K.; Faulks, A.; Jung, Y. S.; Clark, N.; Kim, D. Y.; Wilson, G. J.; Watkins, S. E. 3D printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells. Adv. Energy Mater. 2015, 5, 1401539.

[42]

Cai, L. H.; Liang, L. S.; Wu, J. F.; Ding, B.; Gao, L. L.; Fan, B. Large area perovskite solar cell module. J. Semicond. 2017, 38, 014006.

[43]

Di Giacomo, F.; Shanmugam, S.; Fledderus, H.; Bruijnaers, B. J.; Verhees, W. J. H.; Dorenkamper, M. S.; Veenstra, S. C.; Qiu, W. M.; Gehlhaar, R.; Merckx, T. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cells 2018, 181, 53–59.

[44]

Xu, M.; Ji, W. X.; Sheng, Y. S.; Wu, Y. W.; Cheng, H.; Meng, J.; Yan, Z. B.; Xu, J. F.; Mei, A. Y.; Hu, Y. et al. Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy 2020, 74, 104842.

[45]

Subbiah, A. S.; Isikgor, F. H.; Howells, C. T.; De Bastiani, M.; Liu, J.; Aydin, E.; Furlan, F.; Allen, T. G.; Xu, F. Z.; Zhumagali, S. et al. High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Lett. 2020, 5, 3034–3040.

[46]

Bu, T. L.; Li, J.; Li, H. Y.; Tian, C. C.; Su, J.; Tong, G. Q.; Ono, L. K.; Wang, C.; Lin, Z. P.; Chai, N. Y. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 2021, 372, 1327–1332.

[47]

Uličná, S.; Dou, B. J.; Kim, D. H.; Zhu, K.; Walls, J. M.; Bowers, J. W.; Van Hest, M. F. A. M. Scalable deposition of high-efficiency perovskite solar cells by spray-coating. ACS Appl. Energy Mater. 2018, 1, 1853–1857.

[48]

Sansoni, S.; De Bastiani, M.; Aydin, E.; Ugur, E.; Isikgor, F. H.; Al-Zahrani, A.; Lamberti, F.; Laquai, F.; Meneghetti, M.; De Wolf, S. Eco-friendly spray deposition of perovskite films on macroscale textured surfaces. Adv. Mater. Technol. 2020, 5, 1901009.

[49]

Chou, L. H.; Yu, Y. T.; Osaka, I.; Wang, X. F.; Liu, C. L. Spray deposition of NiOx hole transport layer and perovskite photoabsorber in fabrication of photovoltaic mini-module. J. Power Sources 2021, 491, 229586.

[50]

Taheri, B.; Calabrò, E.; Matteocci, F.; Di Girolamo, D.; Cardone, G.; Liscio, A.; Di Carlo, A.; Brunetti, F. Automated scalable spray coating of SnO2 for the fabrication of low-temperature perovskite solar cells and modules. Energy Technol. 2020, 8, 1901284.

[51]

Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 2014, 7, 2944–2950.

[52]

Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A 2016, 4, 17636–17642.

[53]

Rolston, N.; Scheideler, W. J.; Flick, A. C.; Chen, J. P.; Elmaraghi, H.; Sleugh, A.; Zhao, O.; Woodhouse, M.; Dauskardt, R. H. Rapid open-air fabrication of perovskite solar modules. Joule 2020, 4, 2675–2692.

[54]

Cheng, Y. J.; Wu, H. J.; Ma, J. J.; Li, P. W.; Gu, Z. K.; Zang, S. Q.; Han, L. Y.; Zhang, Y. Q.; Song, Y. L. Droplet manipulation and crystallization regulation in inkjet-printed perovskite film formation. CCS Chem. 2022, 4, 1465–1485.

[55]

Verma, A.; Martineau, D.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F. Inkjet printed mesoscopic perovskite solar cells with custom design capability. Mater. Adv. 2020, 1, 153–160.

[56]

Schackmar, F.; Eggers, H.; Frericks, M.; Richards, B. S; Lemmer, U.; Hernandez-Sosa, G.; Paetzold, U. W. Perovskite solar cells with all-inkjet-printed absorber and charge transport layers. Adv. Mater. Technol. 2021, 6, 2000271.

[57]

Ye, F.; Chen, H.; Xie, F. X.; Tang, W. T.; Yin, M. S.; He, J. J.; Bi, E. B.; Wang, Y. B.; Yang, X. D.; Han, L. Y. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci. 2016, 9, 2295–2301.

[58]

Ye, F.; Tang, W. T.; Xie, F. X.; Yin, M. S.; He, J. J.; Wang, Y. B.; Chen, H.; Qiang, Y. H.; Yang, X. D.; Han, L. Y. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv. Mater. 2017, 29, 1701440.

[59]

Chen, H.; Ye, F.; Tang, W. T.; He, J. J.; Yin, M. S.; Wang, Y. B.; Xie, F. X.; Bi, E. B.; Yang, X. D.; Grätzel, M. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92–95.

[60]

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

[61]

Shen, P. S.; Chen, J. S.; Chiang, Y. H.; Li, M. H.; Guo, T. F.; Chen, P. Low-pressure hybrid chemical vapor growth for efficient perovskite solar cells and large-area module. Adv. Mater. Interfaces 2016, 3, 1500849.

[62]

Feng, J. S.; Jiao, Y. X.; Wang, H.; Zhu, X. J.; Sun, Y. M.; Du, M. Y.; Cao, Y. X.; Yang, D.; Liu, S. F. High-throughput large-area vacuum deposition for high-performance for mamidine-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 3035–3043.

[63]

Lei, T.; Li, F. H.; Zhu, X. Y.; Dong, H.; Niu, Z. W.; Ye, S. W.; Zhao, W.; Xi, J.; Jiao, B.; Ding, L. M. et al. Flexible perovskite solar modules with functional layers fully vacuum deposited. Sol. RRL 2020, 4, 2000292.

[64]

Forgács, D.; Gil-Escrig, L.; Pérez-Del-Rey, D.; Momblona, C.; Werner, J.; Niesen, B.; Ballif, C.; Sessolo, M.; Bolink, H. J. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 2017, 7, 1602121.

[65]

Qiu, L. B.; He, S. S.; Jiang, Y.; Son, D. Y.; Ono, L. K.; Liu, Z. H.; Kim, T.; Bouloumis, T.; Kazaoui, S.; Qi, Y. B. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. J. Mater. Chem. A 2019, 7, 6920–6929.

[66]

Qiu, L. B.; He, S. S.; Liu, Z. H.; Ono, L. K.; Son, D. Y.; Liu, Y. Q.; Tong, G. Q.; Qi, Y. B. Rapid hybrid chemical vapor deposition for efficient and hysteresis-free perovskite solar modules with an operation lifetime exceeding 800 hours. J. Mater. Chem. A 2020, 8, 23404–23412.

[67]

Gao, L. L.; Chen, L.; Huang, S. Y.; Li, X. L.; Yang, G. J. Series and parallel module design for large-area perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 3851–3859.

[68]

Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684.

[69]

Liu, W.; Liu, N. J.; Ji, S. L.; Hua, H. F.; Ma, Y. H.; Hu, R. Y.; Zhang, J.; Chu, L.; Li, X. A.; Huang, W. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 2020, 12, 119.

[70]

Zeng, J.; Bi, L. Y.; Cheng, Y. H.; Xu, B. M.; Jen, A. K. Y. Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy 2022, 1, e9120004.

[71]

Li, X. D.; Zhang, W. X.; Guo, X. M.; Lu, C. Y.; Wei, J. Y.; Fang, J. F. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437.

[72]

Chen, Y. M.; Lei, Y. S.; Li, Y. H.; Yu, Y. G.; Cai, J. Z.; Chiu, M. H.; Rao, R.; Gu, Y.; Wang, C. F.; Choi, W. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 2020, 577, 209–215.

[73]

Rolston, N.; Bush, K. A.; Printz, A. D.; Gold-Parker, A.; Ding, Y. C.; Toney, M. F.; McGehee, M. D; Dauskardt, R. H. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 2018, 8, 1802139.

[74]

Hu, R. Y.; Ge, C. Y.; Chu, L.; Feng, Y. F.; Xiao, S. S.; Ma, Y. H.; Liu, W.; Li, X. A.; Nazeeruddin, M. K. Novel photoelectric material of perovskite-like (CH3)3SPbI3 nanorod arrays with high stability. J. Energy Chem. 2021, 59, 581–588.

[75]

Zhou, T.; Xu, Z. Y.; Wang, R.; Dong, X. Y.; Fu, Q.; Liu, Y. S. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 2022, 34, 2200705.

[76]

Qiu, L. B.; Liu, Z. H.; Ono, L. K.; Jiang, Y.; Son, D. Y.; Hawash, Z.; He, S. S.; Qi, Y. B. Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv. Funct. Mater. 2019, 29, 1806779.

[77]

Aitola, K.; Sonai, G. G.; Markkanen, M.; Kaschuk, J. J.; Hou, X. L.; Miettunen, K.; Lund, P. D. Encapsulation of commercial and emerging solar cells with focus on perovskite solar cells. Sol. Energy 2022, 237, 264–283.

[78]

Kosasih, F. U.; Rakocevic, L.; Aernouts, T.; Poortmans, J.; Ducati, C. Electron microscopy characterization of P3 lines and laser scribing-induced perovskite decomposition in perovskite solar modules. ACS Appl. Mater. Interfaces 2019, 11, 45646–45655.

[79]

Carolus, J.; Merckx, T.; Purohit, Z.; Tripathi, B.; Boyen, H. G.; Aernouts, T.; De Ceuninck, W.; Conings, B.; Daenen, M. Potential-induced degradation and recovery of perovskite solar cells. Sol. RRL 2019, 3, 1900226.

[80]

Brecl, K.; Jošt, M.; Bokalič, M.; Ekar, J.; Kovač, J.; Topič, M. Are perovskite solar cell potential-induced degradation proof? Sol. RRL 2022, 6, 2100815.

[81]

Bi, E. B.; Tang, W. T.; Chen, H.; Wang, Y. B.; Barbaud, J.; Wu, T. H.; Kong, W. Y.; Tu, P.; Zhu, H.; Zeng, X. Q. et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 2019, 3, 2748–2760.

[82]

Yuan, Y. B.; Chae, J.; Shao, Y. C.; Wang, Q.; Xiao, Z. G.; Centrone, A.; Huang, J. S. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500615.

[83]

Bu, T. L.; Shi, S. W.; Li, J.; Liu, Y. F.; Shi, J. L.; Chen, L.; Liu, X. P.; Qiu, J. H.; Ku, Z.; Peng, Y. et al. Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules. ACS Appl. Mater. Interfaces 2018, 10, 14922–14929.

Nano Research Energy
Article number: 9120024
Cite this article:
Chu L, Zhai S, Ahmad W, et al. High-performance large-area perovskite photovoltaic modules. Nano Research Energy, 2022, 1: 9120024. https://doi.org/10.26599/NRE.2022.9120024

10623

Views

2124

Downloads

83

Crossref

90

Scopus

Altmetrics

Received: 25 June 2022
Revised: 17 July 2022
Accepted: 18 July 2022
Published: 24 August 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return