AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Te-mediated electro-driven oxygen evolution reaction

Feng Gao1Jiaqing He1Haowei Wang1Jiahui Lin1Ruixin Chen1Kai Yi1Feng Huang1Zhang Lin2,3Mengye Wang1( )
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou 510275, China
School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 51006, China
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Abstract

In the 21st century, the rapid development of human society has made people's demand for green energy more and more urgent. The high-energy-density hydrogen energy obtained by fully splitting water is not only environmentally friendly, but also is expected to solve the problems caused by the intermittent nature of new energy. However, the slow kinetics and large overpotential of the oxygen evolution reaction (OER) limit its application. The introduction of Te element is expected to bring new breakthroughs. With the least electronegativity among the chalcogens, the Te element has many special properties, such as multivalent states, strong covalentity, and high electrical conductivity, which make it a promising candidate in electrocatalytic OER. In this review, we introduce the peculiarities of Te element, summarize Te doping and the extraordinary performance of its compounds in OER, with emphasis on the scientific mechanism behind Te element promoting the OER kinetic process. Finally, challenges and development prospects of the applications of Te element in OER are presented.

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Capellán-Pérez, I.; Mediavilla, M.; de Castro, C.; Carpintero, Ó.; Miguel, L. J. Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy 2014, 77, 641–666.

[3]

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

[4]

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

[5]
Wang, S. Q.; Tian, C. Z.; Zhou, P.; Zou, L. Q. Grid energy efficiency assessment considering intermittent new energy. In International Conference on Advanced Materials and Energy Sustainability (AMES), World Scientific Publ Co Pte Ltd., Wuhan, China, 2016, pp 362–367.
[6]

Moriarty, P.; Honnery, D. Can renewable energy power the future?. Energy Policy 2016, 93, 3–7.

[7]

Xiong, X. H.; Yang, C. H.; Wang, G. H.; Lin, Y. W.; Ou, X.; Wang, J. H., Zhao, B. T.; Liu, M. L.; Lin, Z.; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1757–1763.

[8]

Yang, B. P.; Liu, K.; Li, H. J. W.; Liu, C. X.; Fu, J. W.; Li, H. M.; Huang, J. E.; Ou, P. F.; Alkayyali, T.; Cai, C. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 2022, 144, 3039–3049.

[9]

Song, H.; Ou, X. W.; Han, B.; Deng, H. Y.; Zhang, W. C.; Tian, C.; Cai, C. F.; Lu, A. H.; Lin, Z.; Chai, L. Y. An overlooked natural hydrogen evolution pathway: Ni2+ boosting H2O reduction by Fe(OH)2 oxidation during low-temperature serpentinization. Angew. Chem., Int. Ed. 2021, 60, 24054–24058.

[10]

Ye, X. C.; Lin, Z. H.; Liang, S. J.; Huang, X. H.; Qiu, X. Y.; Qiu, Y. C.; Liu, X. M.; Xie, D.; Deng, H.; Xiong, X. H. et al. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett. 2019, 19, 1860–1866.

[11]

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

[12]

Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

[13]

Bockris, J. O. M. Hydrogen no longer a high cost solution to global warming: New ideas. Int. J. Hydrogen Energy 2008, 33, 2129–2131.

[14]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[15]

Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 2011, 660, 254–260.

[16]

Sun, H. N.; Xu, X. M.; Song, Y. F.; Zhou, W.; Shao, Z. P. Designing high-valence metal sites for electrochemical water splitting. Adv. Funct. Mater. 2021, 31, 2009779.

[17]

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

[18]

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

[19]

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

[20]

Zhang, J. Y.; Bai, X. W.; Wang, T. T.; Xiao, W.; Xi, P. X.; Wang, J. L.; Gao, D. Q.; Wang, J. Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 2019, 11, 2.

[21]

Du, J.; Zou, Z. H.; Liu, C.; Xu, C. L. Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction. Nanoscale 2018, 10, 5163–5170.

[22]

Liu, K. W.; Zhang, C. L.; Sun, Y. D.; Zhang, G. H.; Shen, X. C.; Zou, F.; Zhang, H. C.; Wu, Z. W.; Wegener, E. C.; Taubert, C. J. et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 2018, 12, 158–167.

[23]

Duan, S.; Chen, S.; Wang, T.; Li, S.; Liu, J.; Liang, J.; Xie, H.; Han, J.; Jiao, S.; Cao, R. et al. Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. Nanoscale 2019, 11, 17376–17383.

[24]

Chen, J. W.; Zhang, T.; Wang, J. L.; Xu, L.; Lin, Z. Y.; Liu, J. D.; Wang, C.; Zhang, N.; Lau, S. P.; Zhang, W. J. et al. Topological phase change transistors based on tellurium Weyl semiconductor. Sci. Adv. 2022, 8, eabn3837.

[25]

Xue, X. X.; Feng, Y. X.; Liao, L.; Chen, Q. J.; Wang, D.; Tang, L. M.; Chen, K. Q. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J. Phys. : Condens. Matter 2018, 30, 125001.

[26]

Lin, Z. Y.; Wang, J. L.; Chen, J. W.; Wang, C.; Liu, J. D.; Zhang, W. J.; Chai, Y. Two-dimensional tellurene transistors with low contact resistance and self-aligned catalytic thinning process. Adv. Electron. Mater. , in press, https://doi.org/10.1002/aelm.202200380.

[27]

Qiu, B.; Wang, C.; Wang, J.; Lin, Z.; Zhang, N.; Cai, L.; Tao, X.; Chai, Y. Metal-free tellurene cocatalyst with tunable bandgap for enhanced photocatalytic hydrogen production. Mater. Today Energy 2021, 21, 100720.

[28]

Rasmussen, F. A.; Thygesen, K. S. Computational 2D materials database: Electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 2015, 119, 13169–13183.

[29]

Masud, J.; Ioannou, P. C.; Levesanos, N.; Kyritsis, P.; Nath, M. A molecular Ni-complex containing tetrahedral nickel selenide core as highly efficient electrocatalyst for water oxidation. ChemSusChem 2016, 9, 3128–3132.

[30]

Liang, Q. H.; Brocks, G.; Sinha, V.; Bieberle-Hütter, A. Tailoring the performance of ZnO for oxygen evolution by effective transition metal doping. ChemSusChem 2021, 14, 3064–3073.

[31]

Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.

[32]

Fan, K.; Zou, H. Y.; Lu, Y.; Chen, H.; Li, F. S.; Liu, J. X.; Sun, L. C.; Tong, L. P.; Toney, M. F.; Sui, M. L. et al. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369–12379.

[33]

Zhao, J.; He, X. Y. Preparation and electrocatalytic properties of oxygen precipitation of amorphous NiCo oxide. J. Synth. Cryst. 2020, 49, 896–901, 907.

[34]

Diao, J. X.; Qiu, Y.; Guo, X. H. Synthesis of mesoporous Co3S4 nanorods and their application as electrocatalysts for efficient oxygen evolution. J. Synth. Cryst. 2018, 47, 370–373, 381.

[35]

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

[36]

Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6,000 hours. Nat. Commun. 2018, 9, 2609.

[37]

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

[38]

Peng, C. L.; Ran, N.; Wan, G.; Zhao, W. P.; Kuang, Z. Y.; Lu, Z.; Sun, C. J.; Liu, J. J.; Wang, L. Z.; Chen, H. R. Engineering active Fe sites on nickel-iron layered double hydroxide through component segregation for oxygen evolution reaction. ChemSusChem 2020, 13, 811–818.

[39]

Mishra, A. K.; Pradhan, D. Hierarchical urchin-like cobalt-doped CuO for enhanced electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 9412–9419.

[40]

Xiong, X. L.; You, C.; Liu, Z. A.; Asiri, A. M.; Sun, X. P. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity. ACS Sustainable Chem. Eng. 2018, 6, 2883–2887.

[41]

Kim, G. H.; Park, Y. S.; Yang, J. C.; Jang, M. J.; Jeong, J.; Lee, J. H.; Park, H. S.; Park, Y. H.; Choi, S. M.; Lee, J. Effects of annealing temperature on the oxygen evolution reaction activity of copper-cobalt oxide nanosheets. Nanomaterials 2021, 11, 657.

[42]

Nguyen, T. X.; Liao, Y. C.; Lin, C. C.; Su, Y. H.; Ting, J. M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2101632.

[43]

Wang, T.; Chen, H.; Yang, Z. Z.; Liang, J. Y.; Dai, S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554.

[44]

Zhang, J.; Quast, T.; He, W. H.; Dieckhöfer, S.; Junqueira, J. R. C.; Öhl, D.; Wilde, P.; Jambrec, D.; Chen, Y. T.; Schuhmann, W. In situ carbon corrosion and Cu leaching as a strategy for boosting oxygen evolution reaction in multimetal electrocatalysts. Adv. Mater. 2022, 34, 2109108.

[45]

Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.

[46]

Shanthi, N.; Mahadevan, P.; Sarma, D. D. Electronic band structure of cadmium chromium chalcogenide spinels: CdCr2S4 and CdCr2Se4. J. Solid State Chem. 2000, 155, 198–205.

[47]

Zhang, J. J.; Wu, M. H.; Shi, Z. T.; Jiang, M.; Jian, W. J.; Xiao, Z. R.; Li, J. X.; Lee, C. S.; Xu, J. Composition and interface engineering of alloyed MoS2xSe2(1–x) nanotubes for enhanced hydrogen evolution reaction activity. Small 2016, 12, 4379–4385.

[48]

Cai, P. W.; Huang, J. H.; Chen, J. X.; Wen, Z. H. Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew. Chem., Int. Ed. 2017, 56, 4858–4861.

[49]

Zhang, H. B.; Zhou, W.; Dong, J. C.; Lu, X. F.; Lou, X. W. Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 2019, 12, 3348–3355.

[50]

Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. et al. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet@NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 2022, 34, 2107053.

[51]

Acharya, P.; Manso, R. H.; Hoffman, A. S.; Bakovic, S. I. P.; Kékedy-Nagy, L.; Bare, S. R.; Chen, J. Y.; Greenlee, L. F. Fe coordination environment, Fe-Incorporated Ni(OH)2 phase, and metallic core are key structural components to active and stable nanoparticle catalysts for the oxygen evolution reaction. ACS Catal. 2022, 12, 1992–2008.

[52]

Jin, Y. S.; Huang, S. L.; Yue, X.; Du, H. Y.; Shen, P. K. Mo-and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363.

[53]

Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

[54]

Han, G. F.; Li, F.; Rykov, A. I.; Im, Y. K.; Yu, S. Y.; Jeon, J. P.; Kim, S. J.; Zhou, W. H.; Ge, R. L.; Ao, Z. M. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403–407.

[55]

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

[56]

Pang, X.; Xue, S. X.; Zhou, T.; Yuan, H. D.; Liu, C.; Lei, W. Y. Advances in two-dimensional black phosphorus-based nanostructures for photocatalytic applications. Prog. Chem. 2022, 34, 630–642.

[57]

Eswaraiah, V.; Zeng, Q. S.; Long, Y.; Liu, Z. Black phosphorus nanosheets: Synthesis, characterization and applications. Small 2016, 12, 3480–3502.

[58]

Flores, E.; Ares, J. R.; Castellanos-Gomez, A.; Barawi, M.; Ferrer, I. J.; Sánchez, C. Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 2015, 106, 022102.

[59]

Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

[60]

Zeng, L.; Zhang, X.; Liu, Y. N.; Yang, X. X.; Wang, J. H.; Liu, Q.; Luo, Q.; Jing, C. Y.; Yu, X. F.; Qu, G. B. et al. Surface and interface control of black phosphorus. Chem 2022, 8, 632–662.

[61]

Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415.

[62]

Zhang, Z. M.; Khurram, M.; Sun, Z. J.; Yan, Q. F. Uniform tellurium doping in black phosphorus single crystals by chemical vapor transport. Inorg. Chem. 2018, 57, 4098–4103.

[63]

Zhu, J. F.; Jiang, X. X.; Yang, Y.; Chen, Q. J.; Xue, X. X.; Chen, K. Q.; Feng, Y. X. Synergy of tellurium and defects in control of activity of phosphorene for oxygen evolution and reduction reactions. Phys. Chem. Chem. Phys. 2019, 21, 22939–22946.

[64]

Mou, Q. X.; Xu, Z. H.; Wang, G. N.; Li, E. L.; Liu, J. Y.; Zhao, P. P.; Liu, X. H.; Li, H. B.; Cheng, G. Z. A bimetal hierarchical layer structure MOF grown on Ni foam as a bifunctional catalyst for the OER and HER. Inorg. Chem. Front. 2021, 8, 2889–2899.

[65]

Park, K.; Kwon, J.; Jo, S.; Choi, S.; Enkhtuvshin, E.; Kim, C.; Lee, D.; Kim, J.; Sun, S.; Han, H. et al. Simultaneous electrical and defect engineering of nickel iron metal-organic-framework via co-doping of metalloid and non-metal elements for a highly efficient oxygen evolution reaction. Chem. Eng. J. 2022, 439, 135720.

[66]

Hu, C. S.; Chen, J.; Wang, Y. Q.; Huang, Y.; Wang, S. T. A telluride-doped porous carbon as highly efficient bifunctional catalyst for rechargeable Zn-air batteries. Electrochim. Acta 2022, 404, 139606.

[67]

Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.; Zhang, Y. H.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189.

[68]

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

[69]

Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

[70]

Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684–692.

[71]

Masa, J.; Piontek, S.; Wilde, P.; Antoni, H.; Eckhard, T.; Chen, Y. T.; Muhler, M.; Apfel, U. P.; Schuhmann, W. Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts. Adv. Energy Mater. 2019, 9, 1900796.

[72]

Han, H.; Kim, K. M.; Ryu, J. H.; Lee, H. J.; Woo, J.; Ali, G.; Chung, K. Y.; Kim, T.; Kang, S.; Choi, S. et al. Boosting oxygen evolution reaction of transition metal layered double hydroxide by metalloid incorporation. Nano Energy 2020, 75, 104945.

[73]

Lee, J. I.; Chae, H. R.; Ryu, J. H. Tellurium-incorporated nickel-cobalt layered double hydroxide and its oxygen evolution reaction. Korean J. Met. Mater. 2021, 59, 491–498.

[74]

Lee, J. I.; Oh, S. G.; Kim, Y. J.; Park, S. J.; Sin, G. S.; Kim, J. H.; Ryu, J. H. Electrocatalytic properties of Te incorporated Ni(OH)2 microcrystals grown on Ni foam. J. Korean Cryst. Growth Cryst. Technol. 2021, 31, 96–101.

[75]

Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; de la Mata, M.; Arbiol, J.; Muhler, M.; Roldan Cuenya, B.; Schuhmann, W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater. 2017, 7, 1700381.

[76]

Li, X. Y.; Yu, L.; Wang, G. L.; Wan, G. P.; Peng, X. G.; Wang, K.; Wang, G. Z. Hierarchical NiAl LDH nanotubes constructed via atomic layer deposition assisted method for high performance supercapacitors. Electrochim. Acta 2017, 255, 15–22.

[77]

Chen, Y. Z.; Pang, W. K.; Bai, H. H.; Zhou, T. F.; Liu, Y. N.; Li, S.; Guo, Z. P. Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 2017, 17, 429–436.

[78]

Lee, S. Y.; Kim, I. S.; Cho, H. S.; Kim, C. H.; Lee, Y. K. Resolving potential-dependent degradation of electrodeposited Ni(OH)2 catalysts in alkaline oxygen evolution reaction (OER): In situ XANES studies. Appl. Catal. B 2021, 284, 119729.

[79]

Zhang, D.; Tang, X. N.; Yang, Z. G.; Yang, Y.; Li, H. P. Construction of honeycomb-like Te-doped NiCo-LDHs for aqueous supercapacitors and as oxygen evolution reaction electrocatalysts. Mater. Adv. 2022, 3, 1286–1294.

[80]

Wang, Y.; Liu, L.; Wang, Y. W.; Fang, L.; Wan, F.; Zhang, H. J. Constituent-tunable ternary CoM2xSe2(1–x) (M = Te, S) sandwich-like graphitized carbon-based composites as highly efficient electrocatalysts for water splitting. Nanoscale 2019, 11, 6108–6119.

[81]

Ibraheem, S.; Li, X. T.; Shah, S. S. A.; Najam, T.; Yasin, G.; Iqbal, R.; Hussain, S.; Ding, W. Y.; Shahzad, F. Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 10972–10978.

[82]

Wu, X. J.; Lu, L. J.; Liu, H. Z.; Feng, L.; Li, W. J.; Sun, L. C. Metalloid Te-doped fe-based catalysts applied for electrochemical water oxidation. ChemistrySelect 2021, 6, 6154–6158.

[83]

Li, G. R.; Yu, X. T.; Yin, F. X.; Lei, Z. P.; Zhao, X. R.; He, X. B.; Li, Z. C. High-performance Te-doped Co3O4 nanocatalysts for oxygen evolution reaction. Int. J. Energy Res. 2022, 46, 5963–5972.

[84]

Over, H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catal. 2021, 11, 8848–8871.

[85]

Ma, Z.; Zhang, Y.; Liu, S. Z.; Xu, W. Q.; Wu, L. J.; Hsieh, Y. C.; Liu, P.; Zhu, Y. M.; Sasaki, K.; Renner, J. N. et al. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core–shell nanocatalysts. J. Electroanal. Chem. 2018, 819, 296–305.

[86]

Zhang, R. H.; Dubouis, N.; Ben Osman, M.; Yin, W.; Sougrati, M. T.; Corte, D. A. D.; Giaume, D.; Grimaud, A. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem., Int. Ed. 2019, 58, 4571–4575.

[87]

Gao, R. Q.; Zhang, Q.; Chen, H.; Chu, X. F.; Li, G. D.; Zou, X. X. Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites comprising trinuclear face-shared IrO6 octahedral strings. J. Energy Chem. 2020, 47, 291–298.

[88]

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

[89]

Xu, J. Y.; Lian, Z.; Wei, B.; Li, Y.; Bondarchuk, O.; Zhang, N.; Yu, Z. P.; Araujo, A.; Amorim, I.; Wang, Z. C. et al. Strong electronic coupling between ultrafine iridium-ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media. ACS Catal. 2020, 10, 3571–3579.

[90]

Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 14710–14714.

[91]

Zhang, W. M.; Yao, X. Y.; Zhou, S. N.; Li, X. W.; Li, L.; Yu, Z.; Gu, L. ZIF-8/ZIF-67-derived Co-Nx-embedded 1d porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 2018, 14, 1800423.

[92]

Zhao, Z. L.; Wu, H. X.; He, H. L.; Xu, X. L.; Jin, Y. D. A high-performance binary Ni-Co hydroxide-based water oxidation electrode with three-dimensional coaxial nanotube array structure. Adv. Funct. Mater. 2014, 24, 4698–4705.

[93]

Shi, Q. R.; Zhu, C. Z.; Du, D.; Wang, J.; Xia, H. B.; Engelhard, M. H.; Feng, S.; Lin, Y. H. Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range. J. Mater. Chem. A 2018, 6, 8855–8859.

[94]

Li, L. G.; Wang, P. T.; Cheng, Z. F.; Shao, Q.; Huang, X. Q. One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond. Nano Res. 2022, 15, 1087–1093.

[95]

Liu, M.; Liu, S. L.; Mao, Q. Q.; Yin, S. L.; Wang, Z. Q.; Xu, Y.; Li, X. N. A.; Wang, L.; Wang, H. J. Ultrafine ruthenium-iridium-tellurium nanotubes for boosting overall water splitting in acidic media. J. Mater. Chem. A 2022, 10, 2021–2026.

[96]

Wang, J.; Han, L. L.; Huang, B. L.; Shao, Q.; Xin, H. L.; Huang, X. Q. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 2019, 10, 5692.

[97]

Tang, B.; Yang, X. D.; Kang, Z. H.; Feng, L. G. Crystallized RuTe2 as unexpected bifunctional catalyst for overall water splitting. Appl. Catal. B 2020, 278, 119281.

[98]

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

[99]

Wang, H. P.; Zhu, S.; Deng, J. W.; Zhang, W. C.; Feng, Y. Z.; Ma, J. M. Transition metal carbides in electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 291–298.

[100]

Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.

[101]

Wang, X. X.; Li, L.; Xu, L. G.; Wang, Z.; Wu, Z. Y.; Liu, Z. L.; Yangs, P. An efficient and stable MnCo@NiS catalyst for oxygen evolution reaction constructed by a step-by-step electrodeposition way. J. Power Sources 2021, 489, 229525.

[102]

Zhang, L. Z.; Chen, C.; Zhou, J. D.; Yang, G. L.; Wang, J. M.; Liu, D.; Chen, Z. Q.; Lei, W. W. Solid phase exfoliation for producing dispersible transition metal dichalcogenides nanosheets. Adv. Funct. Mater. 2020, 30, 2004139.

[103]

Zhang, Y. Y.; Xiao, G.; Wang, H.; Lin, Y. X. Effect of O, Se and Te doping on the electronic band structure and optical properties of single layer MoS2. J. Synth. Cryst. 2017, 46, 1665–1671.

[104]

Wang, D.; Chang, Y. X.; Li, Y. R.; Zhang, S. L.; Xu, S. L. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021, 40, 3156–3165.

[105]

Gao, G. P.; Jiao, Y.; Ma, F. X.; Jiao, Y. L.; Waclawik, E.; Du, A. J. Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T' phase. J. Phys. Chem. C 2015, 119, 13124–13128.

[106]

Ambrosi, A.; Sofer, Z.; Pumera, M. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 2015, 51, 8450–8453.

[107]

Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681–2688.

[108]

Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.

[109]

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

[110]

Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

[111]

Lee, S.; Banjac, K.; Lingenfelder, M.; Hu, X. L. Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem., Int. Ed. 2019, 58, 10295–10299.

[112]

Wang, Z. Y.; Jiang, S. D.; Duan, C. Q.; Wang, D.; Luo, S. H.; Liu, Y. G. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Met. 2020, 39, 1383–1394.

[113]

Gao, Q.; Huang, C. Q.; Ju, Y. M.; Gao, M. R.; Liu, J. W.; An, D.; Cui, C. H.; Zheng, Y. R.; Li, W. X.; Yu, S. H. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew. Chem., Int. Ed. 2017, 56, 7769–7773.

[114]

Majhi, K. C.; Karfa, P.; Madhuri, R. Bimetallic transition metal chalcogenide nanowire array: An effective catalyst for overall water splitting. Electrochim. Acta 2019, 318, 901–912.

[115]

Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412–419.

[116]

Chen, Z. L.; Chen, M.; Yan, X. X.; Jia, H. X.; Fei, B.; Ha, Y.; Qing, H. L.; Yang, H. Y.; Liu, M.; Wu, R. B. Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 2020, 14, 6968–6979.

[117]

He, B.; Wang, X. C.; Xia, L. X.; Guo, Y. Q.; Tang, Y. W.; Zhao, Y.; Hao, Q. L.; Yu, T.; Liu, H. K.; Su, Z. Metal-organic framework-derived Fe-doped Co1.11Te2 embedded in nitrogen-doped carbon nanotube for water splitting. ChemSusChem 2020, 13, 5239–5247.

[118]

Bhat, K. S.; Barshilia, H. C.; Nagaraja, H. S. Porous nickel telluride nanostructures as bifunctional electrocatalyst towards hydrogen and oxygen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 24645–24655.

[119]

Wang, Q.; Zhu, J. Y.; Wang, H. H.; Yu, S. C.; Wu, X. H. Anchoring NiTe domains with unusual composition on Pb0.95Ni0.05Te nanorod as superior lithium-ion battery anodes and oxygen evolution catalysts. Mater. Today Energy 2019, 11, 199–210.

[120]

De Silva, U.; Masud, J.; Zhang, N.; Hong, Y.; Liyanage, W. P. R.; Zaeem, M. A.; Nath, M. Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. J. Mater. Chem. A 2018, 6, 7608–7622.

[121]

Sadaqat, M.; Manzoor, S.; Nisar, L.; Hassan, A.; Tyagi, D.; Shah, J. H.; Ashiq, M. N.; Joya, K. S.; Alshahrani, T.; Najam-ul-Haq, M. Iron doped nickel ditelluride hierarchical nanoflakes arrays directly grown on nickel foam as robust electrodes for oxygen evolution reaction. Electrochim. Acta 2021, 371, 137830.

[122]

Pan, U. N.; Paudel, D. R.; Das, A. K.; Singh, T. I.; Kim, N. H.; Lee, J. H. Ni-nanoclusters hybridized 1T-Mn-VTe2 mesoporous nanosheets for ultra-low potential water splitting. Appl. Catal. B 2022, 301, 120780.

[123]

Zhang, W. Q.; Wang, J.; Zhao, L. L.; Wang, J. R.; Zhao, M. W. Transition-metal monochalcogenide nanowires: Highly efficient bi-functional catalysts for the oxygen evolution/reduction reactions. Nanoscale 2020, 12, 12883–12890.

[124]

Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

[125]

Qin, J. F.; Yang, M.; Chen, T. S.; Dong, B.; Hou, S.; Ma, X.; Zhou, Y. N.; Yang, X. L.; Nan, J.; Chai, Y. M. Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 2745–2753.

[126]

He, R. Z.; Li, M.; Qiao, W.; Feng, L. G. Fe doped Mo/Te nanorods with improved stability for oxygen evolution reaction. Chem. Eng. J. 2021, 423, 130168.

[127]

Inamdar, A. I.; Chavan, H. S.; Hou, B.; Lee, C. H.; Lee, S. U.; Cha, S.; Kim, H.; Im, H. A robust nonprecious CuFe composite as a highly efficient bifunctional catalyst for overall electrochemical water splitting. Small 2020, 16, 1905884.

[128]

Zu, M. Y.; Wang, C. W.; Zhang, L.; Zheng, L. R.; Yang, H. G. Reconstructing bimetallic carbide Mo6Ni6C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Mater. Horiz. 2019, 6, 115–121.

[129]

He, Q.; Li, S. L.; Huang, S. W.; Xiao, L. Q.; Hou, L. X. Construction of uniform Co-Sn-X (X = S, Se, Te) nanocages with enhanced photovoltaic and oxygen evolution properties via anion exchange reaction. Nanoscale 2018, 10, 22012–22024.

[130]
Majhi, K. C.; Karfa, P.; De, S.; Madhuri, R. Hydrothermal synthesis of zinc cobalt telluride nanorod towards oxygen evolution reaction (OER). In International Conference on Advances in Materials and Manufacturing Applications (IConAMMA), IOP Publishing Ltd., Bengaluru, India, 2018.
[131]

Qian, G. F.; Mo, Y. S.; Yu, C.; Zhang, H.; Yu, T. Q.; Luo, L.; Yin, S. B. Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction. Renew. Energy 2020, 162, 2190–2196.

[132]

Su, M. Y.; Li, X. Y.; Zhang, J. T. Telluride semiconductor nanocrystals: Progress on their liquid-phase synthesis and applications. Rare Met. 2022, 41, 2527–2551.

[133]

Na, J. H.; Hoyer, A.; Schoop, L.; Weber, D.; Lotsch, B. V.; Burghard, M.; Kern, K. Tuning the magnetoresistance of ultrathin WTe2 sheets by electrostatic gating. Nanoscale 2016, 8, 18703–18709.

[134]

Yoo, Y.; DeGregorio, Z. P.; Su, Y.; Koester, S. J.; Johns, J. E. In-Plane 2H-1T′ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 2017, 29, 1605461.

[135]

Hu, L. Y.; Zeng, X.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Gu, W. L.; Shi, L.; Zhu, C. Z. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl. Catal. B 2020, 273, 119014.

[136]

Sun, Y. F.; Wang, Y. X.; Sun, D.; Carvalho, B. R.; Read, C. G.; Lee, C. H.; Lin, Z.; Fujisawa, K.; Robinson, J. A.; Crespi, V. H. et al. Low-temperature solution synthesis of few-layer 1T′-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem., Int. Ed. 2016, 55, 2830–2834.

[137]

Ma, R.; Cui, X.; Wang, Y. L.; Xiao, Z. Y.; Luo, R.; Gao, L. K.; Wei, Z. N.; Yang, Y. K. Pyrolysis-free synthesis of single-atom cobalt catalysts for efficient oxygen reduction. J. Mater. Chem. A 2022, 10, 5918–5924.

[138]

Cui, X.; Lei, S.; Wang, A. C.; Gao, L. K.; Zhang, Q.; Yang, Y. K.; Lin, Z. Q. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70, 104525.

[139]

Cui, X.; Gao, L. K.; Lei, S.; Liang, S.; Zhang, J. W.; Sewell, C. D.; Xue, W. D.; Liu, Q.; Lin, Z. Q.; Yang, Y. K. Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2021, 31, 2009197.

[140]

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

Nano Research Energy
Article number: 9120029
Cite this article:
Gao F, He J, Wang H, et al. Te-mediated electro-driven oxygen evolution reaction. Nano Research Energy, 2022, 1: 9120029. https://doi.org/10.26599/NRE.2022.9120029

9568

Views

2088

Downloads

185

Crossref

202

Scopus

Altmetrics

Received: 04 July 2022
Revised: 13 August 2022
Accepted: 15 August 2022
Published: 09 October 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return