AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction

Wenjun Zhang1,2Minghang Jiang1,3,4Songyuan Yang1,3,4Yi Hu1,3,4Bin Mu5( )Zuoxiu Tie1,3,4( )Zhong Jin1,3,4( )
MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
Nanjing Tieming Energy Technology Co. Ltd., Nanjing 210093, China
Suzhou Tierui New Energy Technology Co. Ltd., Suzhou 215228, China
School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 East Tyler Mall, Tempe, AZ 85287, USA
Show Author Information

Graphical Abstract

Abstract

Electrocatalytic carbon dioxide (CO2) reduction is considered as an economical and environmentally friendly approach to neutralizing and recycling greenhouse gas CO2. However, the design of preeminent and robust electrocatalysts for CO2 electroreduction is still challenging. Herein, we report the in-situ growth of dense CuOx nanowire forest on 3D porous Cu foam (CuOx-NWF@Cu-F), which can be directly applied as a freestanding and binder-free working electrode for highly effective electrocatalytic CO2 reduction. By adjusting the surface morphology and chemical composition of CuOx nanowires via surface reconstruction, large electrochemically active surface area and abundant Cu(+1) sites were generated, leading to remarkable activity for CO2 electroreduction. The as-prepared hierarchical conductive electrode exhibited an enhanced Faradaic efficiency of 15.0% for ethanol formation (FEC2H5OH) and a total Faradaic efficiency of 69.4% for all carbonaceous compounds (FEC-total) at a mild applied potential of –0.45 V vs. RHE in 0.1 M KHCO3 electrolyte. It achieved a 4-fold increase in FEC-total than that of Cu nanowire forest supported on 3D porous Cu foam (Cu-NWF@Cu-F) obtained by in-situ reduction of the CuOx-NWF@Cu-F via annealing at H2 atmosphere, and thereby effectively suppressed the hydrogen evolution side-reaction.

Electronic Supplementary Material

Download File(s)
nre-2022-9120033_ESM.pdf (6.7 MB)

References

[1]

Centi, G.; Quadrelli, E. A.; Perathoner, S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731.

[2]

Song, C. S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32.

[3]

Ozin, G. A. Throwing new light on the reduction of CO2. Adv. Mater. 2015, 27, 1957–1963.

[4]

Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

[5]

Yang, Y.; Ajmal, S.; Zheng, X. Z.; Zhang, L. W. Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction. Sustainable Energy Fuels 2018, 2, 510–537.

[6]

Khan, J.; Arsalan, M. H. Solar power technologies for sustainable electricity generation-A review. Renew. Sust. Energy Rev. 2016, 55, 414–425.

[7]

Yang, J.; Chen, B. Emergy-based sustainability evaluation of wind power generation systems. Appl. Energy 2016, 177, 239–246.

[8]

Zhou, Y.; Hejazi, M.; Smith, S.; Edmonds, J.; Li, H.; Clarke, L.; Calvin, K.; Thomson, A. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 2015, 8, 2622–2633.

[9]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.

[10]

Zhang, W. J.; Jin, Z.; Chen, Z. P. Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals. Adv. Sci. 2022, 9, 2105204.

[11]

Raciti, D.; Livi, K. J.; Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 2015, 15, 6829–6835.

[12]

Ma, M.; Djanashvili, K.; Smith, W. A. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys. Chem. Chem. Phys. 2015, 17, 20861–20867.

[13]

Chung, J.; Won, D. H.; Koh, J.; Kim, E. H.; Woo, S. I. Hierarchical Cu pillar electrodes for electrochemical CO2 reduction to formic acid with low overpotential. Phys. Chem. Chem. Phys. 2016, 18, 6252–6258.

[14]

Guo, S. J.; Zhao, S. Q.; Gao, J.; Zhu, C.; Wu, X. Q.; Fu, Y. J.; Huang, H.; Liu, Y.; Kang, Z. H. Cu-C dots nanocorals as electrocatalyst for highly efficient CO2 reduction to formate. Nanoscale 2017, 9, 298–304.

[15]

Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. , Int. Ed. 2016, 55, 5789–5792.

[16]

Roberts, F. S.; Kuhl, K. P.; Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. , Int. Ed. 2015, 54, 5179–5182.

[17]

Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 2014, 136, 13319–13325.

[18]

Wang, H.; Jia, J.; Song, P. F.; Wang, Q.; Li, D. B.; Min, S. X.; Qian, C. X.; Wang, L.; Li, Y. F.; Ma, C. et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: A step towards the electrochemical CO2 refinery. Angew. Chem. , Int. Ed. 2017, 56, 7847–7852.

[19]

Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Nørskov, J. K.; Chorkendorff, I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 2012, 14, 76–81.

[20]

Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. H.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290–4293.

[21]

Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. , Int. Ed. 2016, 55, 6680–6684.

[22]

Li, Y. F.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y. C.; Yang, P. D.; Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 2017, 17, 1312–1317.

[23]

Rashid, N. M.; Kishi, N.; Soga, T. Effects of reduction temperature on copper nanowires growth by thermal reduction of copper oxide nanowires. Mod. Phys. Lett. B 2016, 30, 1650193.

[24]

Song, S. Z.; Meng, J.; Wang, Y.; Zhou, J.; Zhang, L. J.; Gao, N.; Guan, C. Z.; Xiao, G. P.; Hu, Z. W.; Lin, H. J. et al. Molten salt treated Cu foam catalyst for selective electrochemical CO2 reduction reaction. ChemistrySelect 2020, 5, 11927–11933.

[25]

Möller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X. L.; Jovanov, Z.; Gliech, M.; Cuenya, B. R.; Varela, A. S. et al. Electrocatalytic CO2 reduction on CuOx nanocubes: Tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. , Int. Ed. 2020, 59, 17974–17983.

[26]

Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

[27]

Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P. Morphology matters: Tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 2016, 6, 3804–3814.

[28]

Larrazábal, G. O.; Martín, A. J.; Krumeich, F.; Hauert, R.; Pérez-Ramírez, J. Solvothermally-prepared Cu2O electrocatalysts for CO2 reduction with tunable selectivity by the introduction of p-block elements. ChemSusChem 2017, 10, 1255–1265.

[29]

Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

[30]

Choi, J.; Kim, M. J.; Ahn, S. H.; Choi, I.; Jang, J. H.; Ham, Y. S.; Kim, J. J.; Kim, S. K. Electrochemical CO2 reduction to CO on dendritic Ag-Cu electrocatalysts prepared by electrodeposition. Chem. Eng. J. 2016, 299, 37–44.

Nano Research Energy
Article number: 9120033
Cite this article:
Zhang W, Jiang M, Yang S, et al. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Research Energy, 2022, 1: 9120033. https://doi.org/10.26599/NRE.2022.9120033

5710

Views

1085

Downloads

48

Crossref

51

Scopus

Altmetrics

Received: 03 March 2022
Revised: 06 May 2022
Accepted: 09 May 2022
Published: 29 September 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return