AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation – A critical review

Jamal-Deen Musah1,2A. M. Ilyas3,4Shishir Venkatesh1Solomon Mensah5Samuel Kwofie6Vellaisamy A. L. Roy7( )Chi-Man Lawrence Wu1( )
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, China
Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
Department of Computer Science, University of Ghana, Legon, Accra, Ghana
Department of Materials Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
Show Author Information

Graphical Abstract

Abstract

The adverse effect of fossil fuels on the environment is driving research to explore alternative energy sources. Research studies have demonstrated that renewables can offer a promising strategy to curb the problem, among which thermoelectric technology stands tall. However, the challenge with thermoelectric materials comes from the conflicting property of the Seebeck coefficient and the electrical conductivity resulting in a low power factor and hence a lower figure of merit. Researchers have reported various techniques to enhance the figure of merit, particularly in metal chalcogenide thermoelectric materials. Here we present a review on isovalent substitution as a tool to decouple the interdependency of the electrical conductivity and Seebeck coefficient to facilitate simultaneous enhancement in these two parameters. This is proven true in both cationic and anionic side substitutions in metal chalcogenide thermoelectric materials. Numerous publications relating to isovalent substitution in metal chalcogenide thermoelectric are reviewed. This will serve as a direction for current and future research to enhance thermoelectric performance and device application. This review substantiates the role of isovalent substitution in enhancing metal chalcogenide thermoelectric properties compared with conventional systems.

References

[1]

Cullen, J. M.; Allwood, J. M. Theoretical efficiency limits for energy conversion devices. Energy 2010, 35, 2059–2069.

[2]

Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustainable Energy Rev. 2011, 15, 3261–3270.

[3]

Nolas, J. S.; Sharp, J.; Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments. Springer: Berlin, 2001.

[4]

Tritt, T. M.; Subramanian, M. A. Thermoelectric materials, phenomena, and applications: A bird's eye view. MRS Bull. 2006, 31, 188–198.

[5]

Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

[6]

Liu, W. D.; Yang, L.; Chen, Z. G. Cu2Se thermoelectrics: Property, methodology, and device. Nano Today 2020, 35, 100938.

[7]

Rowe, D. M. Thermoelectrics Handbook: Macro to Nano. CRC Press: Boca Raton, 2006.

[8]

Han, C.; Sun, Q.; Li, Z.; Dou, S. X. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 2016, 6, 1600498.

[9]

Yu, F. R.; Zhang, J. J.; Yu, D. L.; He, J. L.; Liu, Z. Y.; Xu, B.; Tian, Y. J. Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk. J. Appl. Phys. 2009, 105, 094303.

[10]

Pei, Y. Z.; Wang, H.; Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 2012, 24, 6125–6135.

[11]

Baláž, P.; Baláž, M.; Achimovičová, M.; Bujňáková, Z.; Dutková, E. Chalcogenide mechanochemistry in materials science: Insight into synthesis and applications (a review). J. Mater. Sci. 2017, 52, 11851–11890.

[12]

Siddique, A. R. M.; Mahmud, S.; Van Heyst, B. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sustainable Energy Rev. 2017, 73, 730–744.

[13]

Nielsch, K.; Bachmann, J.; Kimling, J.; Böttner, H. Thermoelectric nanostructures: From physical model systems towards nanograined composites. Adv. Energy Mater. 2011, 1, 713–731.

[14]

Li, Z.; Sun, Q.; Yao, X. D.; Zhu, Z. H.; Lu, G. Q. Semiconductor nanowires for thermoelectrics. J. Mater. Chem. 2012, 22, 22821–22831.

[15]

He, J.; Liu, Y. F.; Funahashi, R. Oxide thermoelectrics: The challenges, progress, and outlook. J. Mater. Res. 2011, 26, 1762– 1772.

[16]

Jood, P.; Ohta, M. Hierarchical architecturing for layered thermoelectric sulfides and chalcogenides. Materials (Basel). 2015, 8, 1124–1149.

[17]

Dennler, G.; Chmielowski, R.; Jacob, S.; Capet, F.; Roussel, P.; Zastrow, S.; Nielsch, K.; Opahle, I.; Madsen, G. K. H. Are binary copper sulfides/selenides really new and promising thermoelectric materials? Adv. Energy Mater. 2014, 4, 1301581.

[18]

Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479.

[19]

He, R.; Schierning, G.; Nielsch, K. Thermoelectric devices: A review of devices, architectures, and contact optimization. Adv. Mater. Technol. 2018, 3, 1700256.

[20]

Kim, W.; Wang, R.; Majumdar, A. Nanostructuring expands thermal limits. Nano Today 2007, 2, 40–47.

[21]

Li, L.; Liu, W. D.; Liu, Q. F.; Chen, Z. G. Multifunctional wearable thermoelectrics for personal thermal management. Adv. Funct. Mater. 2022, 32, 2200548.

[22]

Chen, Z. G.; Liu, W. D. Thermoelectric coolers: Infinite potentials for finite localized microchip cooling. J. Mater. Sci. Technol. 2022, 121, 256–262.

[23]

Hyland, M.; Hunter, H.; Liu, J.; Veety, E.; Vashaee, D. Wearable thermoelectric generators for human body heat harvesting. Appl. Energy 2016, 182, 518–524.

[24]

Guo, L. K.; Lu, Q. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renew. Sustainable Energy Rev. 2017, 72, 761–773.

[25]

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

[26]

Yuan, J. F.; Zhu, R.; Li, G. Z. Self-powered electronic skin with multisensory functions based on thermoelectric conversion. Adv. Mater. Technol. 2020, 5, 2000419.

[27]

Yuan, J. F.; Zhu, R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Appl. Energy 2020, 271, 115250.

[28]

Kim, J.; Khan, S.; Wu, P.; Park, S.; Park, H.; Yu, C.; Kim, W. Self-charging wearables for continuous health monitoring. Nano Energy 2021, 79, 105419.

[29]

Van Toan, N.; Tuoi, T. T. K.; Sui, H. T.; Trung, N. H.; Samat, K. F.; Ono, T. Ultra-flexible thermoelectric generator based on silicone rubber sheet and electrodeposited thermoelectric material for waste heat harvesting. Energy Rep. 2022, 8, 5026–5037.

[30]

Le, T.; Mayaram, K.; Fiez, T. Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid-State Circuits 2008, 43, 1287–1302.

[31]

Ioffe, A. F. Physics of Semiconductors. Academic Press Inc. : New York, 1961.

[32]

Datta, S. Lessons from Nanoelectronics: A New Perspective on Transport. World Scientific: Singapore, 2012.

[33]

Vesely, F. J. Computational Physics: An Introduction. Springer: New York, 2001.

[34]

Mohamad, A. A. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. Springer: London, 2011.

[35]

Mamur, H.; Üstüner, M. A.; Dilmaç, Ö. F.; Bhuiyan, M. R. A. Performance evaluation of Bi2Te3–xSex (0.10≤x≤1.80) thermoelectric nanostructured materials. Cleaner Chemical Engineering, 2022, 4, 100063.

[36]

Pineda, D. D.; Rezaniakolaei, A.; Brand, O.; Fedder, G. K.; Hierold, C.; Korvink, J. G. Tabata, O. Thermoelectric Energy Conversion: Basic Concepts and Device Applications. Wiley-VCH: Weinheim, 2017.

[37]

Memon, S.; Mihreteab, M.; Katsura, T.; Radwan, A.; Zhang, S.; Serageldin, A. A.; Abo-Zahhad, E. M. Experimental and theoretical performance evaluation of parabolic trough mirror as a solar thermal concentrator to thermoelectric generators. International Journal of Solar Thermal Vacuum Engineering 2020, 1, 23–38.

[38]

Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

[39]

Yavorsky, B. Y.; Hinsche, N. F.; Mertig, I.; Zahn, P. Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3. Phys. Rev. B 2011, 84, 165208.

[40]

Richter, W.; Becker, C. R. Raman and far-infrared investigation of phonons in the rhombohedral V2-VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1–xSex)3 (0 < x < 1), (Bi1–ySby)2Te3 (0 < y < 1). Phys. Status Solidi 1977, 84, 619–628.

[41]

Wang, H.; Zhu, J. J.; Zhu, J. M.; Chen, H. Y. Sonochemical method for the preparation of bismuth sulfide nanorods. J. Phys. Chem. B 2002, 106, 3848–3854.

[42]

Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.

[43]

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

[44]

Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.

[45]

Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602.

[46]

Xie, W. J.; Tang, X. F.; Yan, Y. G.; Zhang, Q. J.; Tritt, T. M. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 2009, 94, 102111.

[47]

Salavati-Niasari, M.; Bazarganipour, M.; Davar, F. Hydrothermal synthesis and characterization of bismuth selenide nanorods via a co-reduction route. Inorg. Chim. Acta 2011, 365, 61–64.

[48]

Batabyal, S. K.; Basu, C.; Das, A. R.; Sanyal, G. S. Solvothermal synthesis of bismuth selenide nanotubes. Mater. Lett. 2006, 60, 2582–2585.

[49]

Yang, X. H.; Wang, X.; Zhang, Z. D. Synthesis and optical properties of single-crystalline bismuth selenide nanorods via a convenient route. J. Cryst. Growth 2005, 276, 566–570.

[50]

Hu, P. F.; Cao, Y. L.; Jia, D. Z.; Wang, L. X. Selective synthesis of Bi2Se3 nanostructures by solvothermal reaction. Mater. Lett. 2010, 64, 493–496.

[51]

Li, J.; Zhu, Y. C.; Du, J.; Zhang, J. H.; Qian, Y. T. Synthesis and shape evolution of bismuth selenide hollow nanospheres. Solid State Commun. 2008, 147, 36–40.

[52]

Loor, M.; Bendt, G.; Schaumann, J.; Hagemann, U.; Heidelmann, M.; Wölper, C.; Schulz, S. Synthesis of Sb2Se3 and Bi2Se3 nanoparticles in ionic liquids at low temperatures and solid state structure of [C4C1Im]3[BiCl6]. Z. Anorg. Allg. Chem. 2017, 643, 60–68.

[53]

Jin, R. C.; Sun, M. W.; Li, G. H. CNTs@C@Bi2Se3 composite as an improved-performance anode for lithium ion batteries. Ceram. Int. 2017, 43, 17093–17099.

[54]

Harpeness, R.; Gedanken, A. Microwave-assisted synthesis of nanosized Bi2Se3. New J. Chem. 2003, 27, 1191–1193.

[55]

Jiang, Y.; Zhu, Y. J.; Cheng, G. F. Synthesis of Bi2Se3 nanosheets by microwave heating using an ionic liquid. Cryst. Growth Des. 2006, 6, 2174–2176.

[56]

Ramezani, M.; Sobhani-Nasab, A.; Davoodi, A. Bismuth selenide nanoparticles: Simple synthesis, characterization, and its light harvesting applications in the presence of novel precursor. J. Mater. Sci. Mater. Electron. 2015, 26, 5440–5445.

[57]

Qiu, X. F.; Burda, C.; Fu, R. L.; Pu, L.; Chen, H. Y.; Zhu, J. J. Heterostructured Bi2Se3 nanowires with periodic phase boundaries. J. Am. Chem. Soc. 2004, 126, 16276–16277.

[58]

Gedanken, A. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 2004, 11, 47–55.

[59]

Qiu, X. F.; Lou, Y. B.; Samia, A. C. S.; Devadoss, A.; Burgess, J. D.; Dayal, S.; Burda, C. PbTe nanorods by sonoelectrochemistry. Angew. Chem., Int. Ed. 2005, 44, 5855–5857.

[60]
Larsson, N. Optical and structural properties of CuxS quantum dots concerning H2O/ethanol solvent ratio. 2013.
[61]

Lin, S. S.; Liao, C. N. Effect of ball milling and post treatment on crystal defects and transport properties of Bi2(Se, Te)3 compounds. J. Appl. Phys. 2011, 110, 093707.

[62]

Jabar, B.; Mansoor, A.; Chen, Y. X.; Jamil, S.; Chen, S.; Liang, G. X.; Li, F.; Fan, P.; Zheng, Z. H. High thermoelectric performance of BixSb2–xTe3 alloy achieved via structural manipulation under optimized heat treatment. Chem. Eng. J. 2022, 435, 135062.

[63]

Lan, Y. C.; Minnich, A. J.; Chen, G.; Ren, Z. F. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 2010, 20, 357–376.

[64]

Gharsallah, M.; Serrano-Sanchez, F. Nemes, N. M.; Martinez, J. L.; Alonso, J. A. Influence of doping and nanostructuration on n-type Bi2(Te0.8Se0.2)3 alloys synthesized by arc melting. Nanoscale Res. Lett. 2017, 12, 47.

[65]

Das, D.; Malik, K.; Deb, A. K.; Kulbachinskii, V. A.; Kytin, V. G.; Chatterjee, S.; Das, D.; Dhara, S.; Bandyopadhyay, S.; Banerjee, A. Tuning of thermoelectric properties with changing Se content in Sb2Te3. Eur. Lett. 2016, 113, 47004.

[66]

Das, D.; Malik, K.; Deb, A. K.; Dhara, S.; Bandyopadhyay, S.; Banerjee, A. Defect induced structural and thermoelectric properties of Sb2Te3 alloy. J. Appl. Phys. 2015, 118, 045102.

[67]

Kulbachinskii, V. A.; Dashevskii, Z. M.; Inoue, M.; Sasaki, M.; Negishi, H.; Gao, W. X.; Lostak, P.; Horak, J.; de Visser, A. Valence-band changes in Sb2–xInxTe3 and Sb2Te3–ySey by transport and Shubnikov-de Haas effect measurements. Phys. Rev. B 1995, 52, 10915–10922.

[68]

Logan, R. A.; Peters, A. J. Impurity effects upon mobility in silicon. J. Appl. Phys. 1960, 31, 122–124.

[69]

Hoang, K.; Mahanti, S. D. Electronic structure of Ga-, In-, and Tl-doped PbTe: A supercell study of the impurity bands. Phys. Rev. B 2008, 78, 085111.

[70]

Jaworski, C. M.; Wiendlocha, B.; Jovovic, V.; Heremans, J. P. Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys. Energy Environ. Sci. 2011, 4, 4155–4162.

[71]

Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557.

[72]

Heremans, J. P.; Wiendlocha, B.; Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012, 5, 5510–5530.

[73]

Jin, H.; Wiendlocha, B.; Heremans, J. P. P-type doping of elemental bismuth with indium, gallium and tin: A novel doping mechanism in solids. Energy Environ. Sci. 2015, 8, 2027–2040.

[74]

Walukiewicz, W.; Shan, W.; Yu, K. M.; Ager Ⅲ, J. W.; Haller, E. E.; Miotkowski, I.; Seong, M. J.; Alawadhi, H.; Ramdas, A. K. Interaction of localized electronic states with the conduction band: Band anticrossing in Ⅱ-VI semiconductor ternaries. Phys. Rev. Lett. 2000, 85, 1552–1555.

[75]

Pei, Y. Z.; Shi, X. Y.; Lalonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69.

[76]

Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.

[77]

Yang, H. R.; Bahk, J. H.; Day, T.; Mohammed, A. M. S.; Snyder, G. J.; Shakouri, A.; Wu, Y. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. Nano Lett. 2015, 15, 1349–1355.

[78]

Kanatzidis, M. G. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659.

[79]

Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.

[80]

Zhang, G. Q.; Kirk, B.; Jauregui, L. A.; Yang, H. R.; Xu, X. F.; Chen, Y. P.; Wu, Y. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett. 2012, 12, 56–60.

[81]

Han, G.; Chen, Z. G.; Yang, L.; Hong, M.; Drennan, J.; Zou, J. Rational design of Bi2Te3 polycrystalline whiskers for thermoelectric applications. ACS Appl. Mater. Interfaces 2015, 7, 989–995.

[82]

Fang, H. Y.; Yang, H. R.; Wu, Y. Thermoelectric properties of silver telluride-bismuth telluride nanowire heterostructure synthesized by site-selective conversion. Chem. Mater. 2014, 26, 3322–3327.

[83]

Fang, H. Y.; Feng, T. L.; Yang, H. R.; Ruan, X. L.; Wu, Y. Synthesis and thermoelectric properties of compositional-modulated lead telluride-bismuth telluride nanowire heterostructures. Nano Lett. 2013, 13, 2058–2063.

[84]

Xie, W. J.; Tang, X. F.; Yan, Y. G.; Zhang, Q. J.; Tritt, T. M. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 2009, 105, 113713.

[85]

Fusa, M.; Yamamoto, N.; Hasezaki, K. Measurement of Seebeck coefficient and conductive behaviors of Bi2Te3–xSex (x = 0.15–0.6) thermoelectric semiconductors without harmful dopants. Mater. Trans. 2014, 55, 942–946.

[86]

Lowhorn, N. D.; Wong-Ng, W.; Lu, Z. Q.; Martin, J.; Green, M. L.; Bonevich, J. E.; Thomas, E. L.; Dilley, N. R.; Sharp, J. Development of a Seebeck coefficient standard reference materialTM. J. Mater. Res. 2011, 26, 1983–1992.

[87]

Benday, N. S.; Dryden, D. M.; Kornbluth, K.; Stroeve, P. A temperature-variant method for performance modeling and economic analysis of thermoelectric generators: Linking material properties to real-world conditions. Appl. Energy 2017, 190, 764–771.

[88]

Puyet, M.; Dauscher, A.; Lenoir, B.; Bellouard, C.; Stiewe, C.; Müller, E.; Hejtmanek, J.; Tobola, J. Influence of Ni on the thermoelectric properties of the partially filled calcium skutterudites Cay Co4–x Nix Sb12. Phys. Rev. B 2007, 75, 245110.

[89]

Puyet, M.; Dauscher, A.; Lenoir, B.; Dehmas, M.; Stiewe, C.; Müller, E.; Hejtmanek, J. Beneficial effect of Ni substitution on the thermoelectric properties in partially filled CayCo4–xNixSb12 skutterudites. J. Appl. Phys. 2005, 97, 083712.

[90]

Qiu, P. F.; Yang, J.; Liu, R. H.; Shi, X.; Huang, X. Y.; Snyder, G. J.; Zhang, W.; Chen, L. D. High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12(R=Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J. Appl. Phys. 2011, 109, 063713.

[91]

Sakurada, S.; Shutoh, N. Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 2005, 86, 082105.

[92]

Shen, Q.; Chen, L.; Goto, T.; Hirai, T.; Yang, J.; Meisner, G. P.; Uher, C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett. 2001, 79, 4165–4167.

[93]

Katayama, T.; Kim, S. W.; Kimura, Y.; Mishima, Y. The effects of quaternary additions on thermoelectric properties of TiNiSn-based half-Heusler alloys. J. Electron. Mater. 2003, 32, 1160–1165.

[94]

Zaitsev, V. K.; Fedorov, M. I.; Gurieva, E. A.; Eremin, I. S.; Konstantinov, P. P.; Samunin, A. Y.; Vedernikov, M. V. Highly effective Mg2Si1–xSnx thermoelectrics. Phys. Rev. B 2006, 74, 045207.

[95]

Bux, S. K.; Yeung, M. T.; Toberer, E. S.; Snyder, G. J.; Kaner, R. B.; Fleurial, J. P. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J. Mater. Chem. 2011, 21, 12259–12266.

[96]

Xu, G. J.; Funahashi, R.; Shikano, M.; Matsubara, I.; Zhou, Y. Q. Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system. Appl. Phys. Lett. 2002, 80, 3760–3762.

[97]

Jood, P.; Peleckis, G.; Wang, X. L.; Dou, S. X. Thermoelectric properties of Ca3Co4O9 and Ca2.8Bi0.2Co4O9 thin films in their island formation mode. J. Mater. Res. 2013, 28, 1932–1939.

[98]

Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H. Thermoelectric properties of Al-doped ZnO as a promising oxide material for hightemperature thermoelectric conversion. J. Mater. Chem. 1997, 7, 85–90.

[99]

Misture, S.; Edwards, D. High-temperature oxide thermoelectrics. Am. Ceram. Soc. Bull. 2012, 91, 24–27.

[100]

Musah, J. D.; Xiao, Y. J.; Ilyas, A. M.; Novak, T. G.; Jeon, S.; Arava, C.; Novikov, S. V.; Nikulin, D. S.; Xu, W.; Liu, L. Y. et al. Simultaneous enhancement of thermopower and electrical conductivity through isovalent substitution of cerium in bismuth selenide thermoelectric materials. ACS Appl. Mater. Interfaces 2019, 11, 44026–44035.

[101]

Eshelby, J. D. The continuum theory of lattice defects. Solid State Phys. 1956, 3, 79–144.

[102]

Musah, J. D.; Ilyas, A. M.; Novitskii, A.; Serhiienko, I.; Egbo, K. O.; Saianand, G.; Khovaylo, V.; Kwofie, S.; Yu, K. M.; Roy, V. A. L. Effective decoupling of Seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material. J. Alloys Compd. 2020, 857, 157559.

[103]

Wu, F.; Song, H. Z.; Jia, J. F.; Hu, X. Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy. Prog. Nat. Sci. Mater. Int. 2013, 23, 408–412.

[104]

Lee, K. H.; Kim, H. S.; Kim, M.; Roh, J. W.; Lim, J. H.; Kim, W. J.; Kim, S. I.; Lee, W. Isovalent sulfur substitution to induce a simultaneous increase in the effective mass and weighted mobility of a p-type Bi-Sb-Te alloy: An approach to enhance the thermoelectric performance over a wide temperature range. Acta Mater. 2021, 205, 116578.

[105]

Vaney, J. B.; Delaizir, G.; Wiendlocha, B.; Tobola, J.; Alleno, E.; Piarristeguy, A.; Gonçalves, A. P.; Gendarme, C.; Malaman, B.; Dauscher, A. et al. Effect of isovalent substitution on the electronic structure and thermoelectric properties of the solid solution α-As2Te3–xSex (0 ≤ x ≤ 1.5). Inorg. Chem. 2017, 56, 2248–2257.

[106]

Devender; Gehring, P.; Gaul, A.; Hoyer, A.; Vaklinova, K.; Mehta, R. J.; Burghard, M.; Borca-Tasciuc, T.; Singh, D. J.; Kern, K. et al. Harnessing topological band effects in bismuth telluride selenide for large enhancements in thermoelectric properties through isovalent doping. Adv. Mater. 2016, 28, 6436–6441.

[107]

Shi, H. L.; Parker, D.; Du, M. H.; Singh, D. J. Connecting thermoelectric performance and topological-insulator behavior: Bi2Te3 and Bi2Te2Se from first principles. Phys. Rev. Appl. 2015, 3, 014004.

[108]

Neupane, M.; Xu, S. Y.; Wray, L. A.; Petersen, A.; Shankar, R.; Alidoust, N.; Liu, C.; Fedorov, A.; Ji, H.; Allred, J. M. et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 2012, 85, 235406.

[109]

Xu, S. Y.; Xia, Y.; Wray, L. A.; Jia, S.; Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 2011, 332, 560–564.

[110]

Gehring, P.; Benia, H. M.; Weng, Y.; Dinnebier, R.; Ast, C. R.; Burghard, M.; Kern, K. A natural topological insulator. Nano Lett. 2013, 13, 1179–1184.

[111]

Musah, J. D.; Guo, C.; Novitskii, A.; Serhiienko, I.; Adesina, A. E.; Khovaylo, V.; Wu, C. L.; Zapien, J. A.; Roy, V. A. L. Ultralow thermal conductivity in dual-doped n-type Bi2Te3 material for enhanced thermoelectric properties. Adv. Electron. Mater. 2021, 7, 2000910.

[112]

Liu, S.; Peng, N.; Zhou, C. J.; Bai, Y.; Tang, S.; Ma, D. Y.; Ma, F.; Xu, K. W. Fabrication of Bi2Te3–xSex nanowires with tunable chemical compositions and enhanced thermoelectric properties. Nanotechnology 2017, 28, 085601.

[113]

Soni, A.; Zhao, Y. Y.; Yu, L. G.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3–xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203–1209.

[114]

Miller, G. R.; Li, C. Y. Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 1965, 26, 173–177.

[115]

Shewmon, P. G. Diffusion in Solids. McGraw-Hill: New York, 1963.

[116]

Hong, M.; Chen, Z. G.; Zou, J. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chin. Phys. B 2018, 27, 048403.

[117]

Wiese, J. R.; Muldawer, L. Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys. J. Phys. Chem. Solids 1960, 15, 13–16.

[118]

Drabble, J. R.; Goodman, C. H. L. Chemical bonding in bismuth telluride. J. Phys. Chem. Solids 1958, 5, 142–144.

[119]

Horák, J.; Starý, Z.; Lošťák, P.; Pancíř, J. Anti-site defects in n-Bi2Se3 crystals. J. Phys. Chem. Solids 1990, 51, 1353–1360.

[120]

Schultz, J. M.; McHugh, J. P.; Tiller, W. A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J. Appl. Phys. 1962, 33, 2443–2450.

[121]

Li, D.; Qin, X. Y.; Dou, Y. C.; Li, X. Y.; Sun, R. R.; Wang, Q. Q.; Li, L. L.; Xin, H. X.; Wang, N.; Wang, N. N.; et al. Thermoelectric properties of hydrothermally synthesized Bi2Te3–xSex nanocrystals. Scripta Materialia 2012, 67, 161–164.

[122]

Srinivasan, R.; Gothard, N.; Spowart, J. Improvement in thermoelectric properties of an n-type bismuth telluride (Bi2Se0.3Te2.7) due to texture development and grain refinement during hot deformation. Mater. Lett. 2010, 64, 1772–1775.

[123]

Yan, X.; Poudel, B.; Ma, Y.; Liu, W. S.; Joshi, G.; Wang, H.; Lan, Y. C.; Wang, D. Z.; Chen, G.; Ren, Z. F. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 2010, 10, 3373–3378.

[124]

Kim, C.; Kim, D. H.; Kim, J. S.; Han, Y. S.; Chung, J. S.; Kim, H. A study of the synthesis of bismuth tellurium selenide nanocompounds and procedures for improving their thermoelectric performance. J. Alloys Compd. 2011, 509, 9472–9478.

[125]

Carlton, C. E.; Kuryak, C. A.; Liu, W. S.; Ren, Z. F.; Chen, G.; Shao-Horn, Y. Disordered stoichiometric nanorods and ordered off-stoichiometric nanoparticles in n-type thermoelectric Bi2Te2.7Se0.3. J. Appl. Phys. 2012, 112, 093518.

[126]

Hu, L. P.; Zhu, T. J.; Liu, X. H.; Zhao, X. B. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 2014, 24, 5211–5218.

[127]

Keawprak, N.; Lao-Ubol, S.; Eamchotchawalit, C.; Sun, Z. M. Thermoelectric properties of Bi2SexTe3–x prepared by Bridgman method. J. Alloys Compd. 2011, 509, 9296–9301.

[128]

Nozariasbmarz, A.; Krasinski, J. S.; Vashaee, D. n-Type bismuth telluride nanocomposite materials optimization for thermoelectric generators in wearable applications. Materials (Basel). 2019, 12, 1529.

[129]

Lu, X.; Yao, W.; Wang, G. W.; Zhou, X. Y.; Morelli, D.; Zhang, Y. S.; Chu, H.; Hui, S.; Uher, C. Band structure engineering in highly degenerate tetrahedrites through isovalent doping. J. Mater. Chem. A 2016, 4, 17096–17103.

[130]

Sk, R.; Shirolkar, M. M.; Dhara, B.; Kulkarni, S.; Deshpande, A. Enhancing the thermopower and tuning the resistivity in Bi2Se3 with Fe-doping. Chem. Phys. Lett. 2015, 638, 94–98.

[131]

Sun, G. L.; Qin, X. Y.; Li, D.; Zhang, J.; Ren, B. J.; Zou, T. H.; Xin, H. X.; Paschen, S. B.; Yan, X. L. Enhanced thermoelectric performance of n-type Bi2Se3 doped with Cu. J. Alloys Compd. 2015, 639, 9–14.

[132]

Cho, H.; Kim, J. H.; Back, S. Y.; Ahn, K.; Rhyee, J. S.; Park, S. D. Enhancement of thermoelectric properties in CuI-doped Bi2Te2.7Se0.3 by hot-deformation. J. Alloys Compd. 2018, 731, 531–536.

[133]

Vaško, A.; Tichý, L.; Horák, J.; Weissenstein, J. Amphoteric nature of copper impurities in Bi2Se3 crystals. Appl. Phys. 1974, 5, 217–221.

[134]

Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777–779.

[135]

Zhang, X.; Zhao, L. D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105.

[136]

Liao, B. L.; Chen, G. Nanocomposites for thermoelectrics and thermal engineering. MRS Bull. 2015, 40, 746–752.

[137]

He, J. Q.; Kanatzidis, M. G.; Dravid, V. P. High performance bulk thermoelectrics via a panoscopic approach. Mater. Today 2013, 16, 166–176.

[138]

Zhao, L. D.; Dravid, V. P.; Kanatzidis, M. G. The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 2014, 7, 251–268.

[139]

Heinrich, C. P.; Day, T. W.; Zeier, W. G.; Snyder, G. J.; Tremel, W. Effect of isovalent substitution on the thermoelectric properties of the Cu2ZnGeSe4–xSx series of solid solutions. J. Am. Chem. Soc. 2014, 136, 442–448.

[140]

Chmielowski, R.; Bhattacharya, S.; Jacob, S.; Péré, D.; Jacob, A.; Moriya, K.; Delatouche, B.; Roussel, P.; Madsen, G.; Dennler, G. Strong reduction of thermal conductivity and enhanced thermoelectric properties in CoSbS1–xSex paracostibite. Sci. Rep. 2017, 7, 46630.

[141]

Wu, C. F.; Wei, T. R.; Li, J. F. Enhancing average ZT in pristine PbSe by over-stoichiometric Pb addition. APL Mater. 2016, 4, 104801.

[142]

Lee, Y.; Lo, S. H.; Chen, C. Q.; Sun, H.; Chung, D. Y.; Chasapis, T. C.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. Nat. Commun. 2014, 5, 3640.

[143]

Liu, W. S.; Guo, C. F.; Yao, M. L.; Lan, Y. C.; Zhang, H.; Zhang, Q.; Chen, S.; Opeil, C. P.; Ren, Z. F. Bi2S3 nanonetwork as precursor for improved thermoelectric performance. Nano Energy 2014, 4, 113–122.

[144]

Yu, F. R.; Xu, B.; Zhang, J. J.; Yu, D. L.; He, J. L.; Liu, Z. Y.; Tian, Y. J. Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi2Te3 bulks. Mater. Res. Bull. 2012, 47, 1432–1437.

[145]

Zhao, L. D.; Zhang, B. P.; Li, J. F.; Zhang, H. L.; Liu, W. S. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 2008, 10, 651–658.

[146]

Park, K.; Ahn, K.; Cha, J.; Lee, S.; Chae, S. I.; Cho, S. P.; Ryee, S.; Im, J.; Lee, J.; Park, S. D. et al. Extraordinary off-stoichiometric bismuth telluride for enhanced n-type thermoelectric power factor. J. Am. Chem. Soc. 2016, 138, 14458–14468.

[147]

Zhang, Q.; Liao, B. L.; Lan, Y. C.; Lukas, K.; Liu, W. S.; Esfarjani, K.; Opeil, C.; Broido, D.; Chen, G.; Ren, Z. F. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc. Natl. Acad. Sci. USA 2013, 110, 13261–13266.

[148]

Zhao, L. D.; He, J. Q.; Wu, C. I.; Hogan, T. P.; Zhou, X. Y.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Thermoelectrics with earth abundant elements: High performance p-type PbS nanostructured with SrS and CaS. J. Am. Chem. Soc. 2012, 134, 7902–7912.

[149]

Yu, B.; Liu, W. S.; Chen, S.; Wang, H.; Wang, H. Z.; Chen, G.; Ren, Z. F. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy 2012, 1, 472–478.

[150]

Jiang, Q. H.; Yan, H. X.; Khaliq, J.; Shen, Y.; Simpson, K.; Reece, M. J. Enhancement of thermoelectric properties by atomic-scale percolation in digenite CuxS. J. Mater. Chem. A 2014, 2, 9486–9489.

[151]

Ali, Z.; Butt, S.; Cao, C. B.; Butt, F. K.; Tahir, M.; Tanveer, M.; Aslam, I.; Rizwan, M.; Idrees, F.; Khalid, S. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit. AIP Adv. 2014, 4, 117129.

[152]

Kang, Y. L.; Zhang, Q.; Fan, C. Z.; Hu, W. P.; Chen, C.; Zhang, L.; Yu, F. R.; Tian, Y. J.; Xu, B. High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. J. Alloys Compd. 2017, 700, 223–227.

[153]

Tan, Q.; Li, J. F. Thermoelectric properties of Sn-S bulk materials prepared by mechanical alloying and spark plasma sintering. J. Electron. Mater. 2014, 43, 2435–2439.

[154]

Shi, X.; Cho, J. Y.; Salvador, J. R.; Yang, J. H.; Wang, H. Thermoelectric properties of polycrystalline In4Se3 and In4Te3. Appl. Phys. Lett. 2010, 96, 162108.

[155]

Wan, C. L.; Gu, X. K.; Dang, F.; Itoh, T.; Wang, Y. F.; Sasaki, H.; Kondo, M.; Koga, K.; Yabuki, K.; Snyder, G. J. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 2015, 14, 622–627.

[156]

Liu, W. S.; Lukas, K. C.; McEnaney, K.; Lee, S.; Zhang, Q.; Opeil, C. P.; Chen, G.; Ren, Z. F. Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy Environ. Sci. 2013, 6, 552–560.

[157]

Liu, D. W.; Li, J. F.; Chen, C.; Zhang, B. P. Effects of SiC nanodispersion on the thermoelectric properties of p-type and n-type Bi2Te3-based alloys. J. Electron. Mater. 2011, 40, 992–998.

[158]

Li, H.; Cai, K. F.; Du, Y.; Wang, H. F.; Shen, S. Z.; Li, X. L.; Wang, Y. Y.; Zhou, C. W. Preparation and thermoelectric properties of AgPb18SbTe20–xSex (x =1, 2, 4) materials. Curr. Appl. Phys. 2012, 12, 188–192.

[159]

Poudeu, P. F. P.; D'Angelo, J.; Kong, H. J.; Downey, A.; Short, J. L.; Pcionek, R.; Hogan, T. P.; Uher, C.; Kanatzidis, M. G. Nanostructures versus solid solutions: Low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10–xSex bulk materials. J. Am. Chem. Soc. 2006, 128, 14347–14355.

[160]

Hong, M.; Chasapis, T. C.; Chen, Z. G.; Yang, L.; Kanatzidis, M. G.; Snyder, G. J.; Zou, J. n-Type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 2016, 10, 4719–4727.

[161]

Ginting, D.; Lin, C. C.; Rathnam, L.; Yun, J. H.; Yu, B. K.; Kim, S. J.; Rhyee, J. S. High thermoelectric performance due to nano-inclusions and randomly distributed interface potentials in N-type (PbTe0.93–xSe0.07Clx)0.93(PbS)0.07 composites. J. Mater. Chem. A 2017, 5, 13535–13543.

[162]

Banik, A.; Biswas, K. Lead-free thermoelectrics: Promising thermoelectric performance in p-type SnTe1–xSex system. J. Mater. Chem. A 2014, 2, 9620–9625.

[163]

Zhou, Y. F.; Li, X. Y.; Bai, S. Q.; Chen, L. D. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals. J. Cryst. Growth 2010, 312, 775–780.

[164]

Hu, L. P.; Liu, X. H.; Xie, H. H.; Shen, J. J.; Zhu, T. J.; Zhao, X. B. Improving thermoelectric properties of n-type bismuth-telluridebased alloys by deformation-induced lattice defects and texture enhancement. Acta Mater. 2012, 60, 4431–4437.

[165]

Shin, W. H.; Roh, J. W.; Ryu, B.; Chang, H. J.; Kim, H. S.; Lee, S.; Seo, W. S.; Ahn, K. Enhancing thermoelectric performances of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 incorporation. ACS Appl. Mater. Interfaces 2018, 10, 3689–3698.

[166]

Lan, Y. C.; Poudel, B.; Ma, Y.; Wang, D. Z.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F. Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett. 2009, 9, 1419–1422.

[167]

Zhu, T. J.; Xu, Z. J.; He, J.; Shen, J. J.; Zhu, S.; Hu, L. P.; Tritt, T. M.; Zhao, X. B. Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi, Sb)2Te3 thermoelectric materials. J. Mater. Chem. A 2013, 1, 11589–11594.

[168]

Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H. et al. Dense dislocation arrays embedded in grain boundaries for highperformance bulk thermoelectrics. Science 2015, 348, 109–114.

[169]

Li, H. Y.; Jing, H. Y.; Han, Y. D.; Lu, G. Q.; Xu, L. Y. Effects of mechanical alloying process and sintering methods on the microstructure and thermoelectric properties of bulk Bi0.5Sb1.5Te3 alloy. Intermetallics 2013, 43, 16–23.

[170]

Luo, Y. B.; Yang, J. Y.; Jiang, Q. H.; Fu, L. W.; Xiao, Y.; Li, W. X.; Zhang, D.; Zhou, Z. W.; Cheng, Y. D. Melting and solidification of bismuth antimony telluride under a high magnetic field: A new route to high thermoelectric performance. Nano Energy 2015, 15, 709–718.

[171]

Jiang, Q. H.; Yan, H. X.; Khaliq, J.; Ning, H. P.; Grasso, S.; Simpson, K.; Reece, M. J. Large ZT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J. Mater. Chem. A 2014, 2, 5785–5790.

[172]

Zhu, W. T.; Zhao, W. Y.; Zhou, H. Y.; Yu, J.; Tang, D. G.; Liu, Z. Y.; Zhang, Q. J. Cost-efficient preparation and enhanced thermoelectric performance of Bi0.48Sb1.52Te3 bulk materials with micro- and nanostructures. J. Electron. Mater. 2014, 43, 1768–1774.

[173]

Wu, F.; Shi, W. Y.; Hu, X. Preparation and thermoelectric properties of flower-like nanoparticles of Ce-doped Bi2Te3. Electron. Mater. Lett. 2015, 11, 127–132.

[174]

Shen, J. J.; Zhu, T. J.; Zhao, X. B.; Zhang, S. N.; Yang, S. H.; Yin, Z. Z. Recrystallization induced in situ nanostructures in bulk bismuthantimony tellurides: A simple top down route and improved thermoelectric properties. Energy Environ. Sci. 2010, 3, 1519–1523.

[175]

Xu, Z. J.; Hu, L. P.; Ying, P. J.; Zhao, X. B.; Zhu, T. J. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater. 2015, 84, 385–392.

[176]

Musah, J. D.; Liu, L. L.; Guo, C.; Novitskii, A.; Ilyas, A. O.; Serhiienko, I.; Khovaylo, V.; Roy, V. A. L.; Wu, C. M. L. Enhanced thermoelectric performance of bulk bismuth selenide: Synergistic effect of indium and antimony co-doping. ACS Sustainable Chem. Eng. 2022, 10, 3862–3871.

[177]

Girard, S. N.; He, J. Q.; Zhou, X. Y.; Shoemaker, D.; Jaworski, C. M.; Uher, C.; Dravid, V. P.; Heremans, J. P.; Kanatzidis, M. G. High performance Na-doped PbTe-PbS thermoelectric materials: Electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 2011, 133, 16588–16597.

[178]

Li, C. W.; Ma, J.; Cao, H. B.; May, A. F.; Abernathy, D. L.; Ehlers, G.; Hoffmann, C.; Wang, X.; Hong, T.; Huq, A. et al. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics. Phys. Rev. B 2014, 90, 214303.

[179]

Skelton, J. M.; Parker, S. C.; Togo, A.; Tanaka, I.; Walsh, A. Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Phys. Rev. B 2014, 89, 205203.

[180]

Chen, Z. W.; Ge, B. H.; Li, W.; Lin, S. Q.; Shen, J. W.; Chang, Y. J.; Hanus, R.; Snyder, G. J.; Pei, Y. Z. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat. Commun. 2017, 8, 13828.

[181]

Shi, Y.; Tang, Y.; Liu, K.; Zhong, S.; Chen, S.; Yu, L.; Wu, J.; Zhang, Q.; Su, X.; Tang, X. Modulating the valence of Ga and the deep level impurity for high thermoelectric performance of n-type Pb0.98Ga0.02Te1–xSex compounds. Mater. Today Phys. 2022, 27, 100766.

[182]

Wei, T. R.; Qin, Y. T.; Deng, T. T.; Song, Q. F.; Jiang, B. B.; Liu, R. H.; Qiu, P. F.; Shi, X.; Chen, L. D. Copper chalcogenide thermoelectric materials. Sci. China Mater. 2019, 62, 8–24.

[183]
Tippireddy, S.; Powell, A. V.; Wong, T. K. S. High-performance low-cost sulfide/selenide thermoelectric devices. In Sulfide and Selenide Based Materials for Emerging Applications. Dalapati, G.; Wong, T. S.; Kundu, S.; Chakraborty, A.; Zhuk, S., Eds.; Elsevier: Amsterdam, 2022; pp 329–376.
[184]

Zhao, K. P.; Liu, K.; Yue, Z. M.; Wang, Y. C.; Song, Q. F.; Li, J.; Guan, M. J.; Xu, Q.; Qiu, P. F.; Zhu, H. et al. Are Cu2Te-based compounds excellent thermoelectric materials? Adv. Mater. 2019, 31, 1903480.

[185]

Qin, B. C.; Wang, D. Y.; Liu, X. X.; Qin, Y. X.; Dong, J. F.; Luo, J. F.; Li, J. W.; Liu, W.; Tan, G. J.; Tang, X. F. et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science 2021, 373, 556–561.

[186]

Zhang, R.; Pei, J.; Han, Z. J.; Wu, Y.; Zhao, Z.; Zhang, B. P. Optimal performance of Cu1.8S1–xTex thermoelectric materials fabricated via high-pressure process at room temperature. J. Adv. Ceram. 2020, 9, 535–543.

[187]

Byeon, D.; Sobota, R.; Delime-Codrin, K.; Choi, S.; Hirata, K.; Adachi, M.; Kiyama, M.; Matsuura, T.; Yamamoto, Y.; Matsunami, M. et al. Discovery of colossal seebeck effect in metallic Cu2Se. Nat. Commun. 2019, 10, 72.

[188]

Li, W.; Lin, S. Q.; Zhang, X. Y.; Chen, Z. W.; Xu, X. F.; Pei, Y. Z. Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chem. Mater. 2016, 28, 6227–6232.

[189]

Su, L. Z.; Wang, D. Y.; Wang, S. N.; Qin, B. C.; Wang, Y. P.; Qin, Y. X.; Jin, Y.; Chang, C.; Zhao, L. D. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022, 375, 1385–1389.

[190]

Yang, L.; Chen, Z. G.; Han, G.; Hong, M.; Zou, Y. C.; Zou, J. High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano Energy 2015, 16, 367–374.

[191]

Ducka, A.; Trawiński, B.; Bochentyn, B.; Dubiel, A.; Kusz, B. Structure and thermoelectric properties of nickel-doped copper selenide synthesised in a hydrogen atmosphere. Mater. Res. Bull. 2021, 133, 111042.

[192]

Li, J. Q.; Liu, F. S.; Ao, W. Q.; Hu, L.P.; Zhang, C. H. Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram. Int. J. Mater. Res. 2022, 113, 340–350.

[193]

Hong, M.; Zou, J.; Chen, Z. G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv. Mater. 2019, 31, 1807071.

[194]

Li, J.; Zhang, X. Y.; Lin, S. Q.; Chen, Z. W.; Pei, Y. Z. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 2017, 29, 605–611.

[195]

Hong, M.; Chen, Z. G.; Yang, L.; Zou, Y. C.; Dargusch, M. S.; Wang, H.; Zou, J. Realizing zT of 2.3 in Ge1–xySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv. Mater. 2018, 30, 1705942.

[196]

Zhang, X. Y.; Bu, Z. L.; Lin, S. Q.; Chen, Z. W.; Li, W.; Pei, Y. Z. GeTe thermoelectrics. Joule 2020, 4, 986–1003.

[197]

Wang, D. Z.; Liu, W. D.; Li, M.; Yin, L. C.; Gao, H.; Sun, Q.; Wu, H.; Wang, Y. F.; Shi, X. L.; Yang, X. M. et al. Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nanodomains. Chem. Eng. J. 2022, 441, 136131.

[198]

Gelbstein, Y.; Davidow, J.; Girard, S. N.; Chung, D. Y.; Kanatzidis, M. Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv. Energy Mater. 2013, 3, 815–820.

[199]

Zhang, X. Y.; Li, J.; Wang, X.; Chen, Z. W.; Mao, J. J.; Chen, Y.; Pei, Y. Z. Vacancy manipulation for thermoelectric enhancements in GeTe alloys. J. Am. Chem. Soc. 2018, 140, 15883–15888.

[200]

Zheng, Z.; Su, X. L.; Deng, R. G.; Stoumpos, C.; Xie, H. Y.; Liu, W.; Yan, Y. G.; Hao, S. Q.; Uher, C.; Wolverton, C. et al. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J. Am. Chem. Soc. 2018, 140, 2673–2686.

[201]

Li, S.; Li, X. F.; Ren, Z. F.; Zhang, Q. Recent progress towards high performance of tin chalcogenide thermoelectric materials. J. Mater. Chem. A 2018, 6, 2432–2448.

[202]

Du, B. S.; Jian, J. K.; Liu, H. T.; Liu, J.; Qiu, L. Recent advances in non-Pb-based group-IV chalcogenides for environmentally-friendly thermoelectric materials. Chin. Phys. B 2018, 27, 048102.

[203]

Li, Y.; Shi, X.; Ren, D. D.; Chen, J. K.; Chen, L. D. Investigation of the anisotropic thermoelectric properties of oriented polycrystalline SnSe. Energies 2015, 8, 6275–6285.

[204]

Li, C. W.; Hong, J.; May, A. F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, O. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 2015, 11, 1063–1069.

[205]

He, X. Y.; Zhang, H. Y.; Nose, T.; Katase, T.; Tadano, T.; Ide, K.; Ueda, S.; Hiramatsu, H.; Hosono, H.; Kamiya, T. Degenerated hole doping and ultra-low lattice thermal conductivity in polycrystalline SnSe by nonequilibrium isovalent Te substitution. Adv. Sci. 2022, 9, 2105958.

[206]

LeBlanc, S.; Yee, S. K.; Scullin, M. L.; Dames, C.; Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sustainable Energy Rev. 2014, 32, 313–327.

[207]

Yadav, G. G.; Susoreny, J. A.; Zhang, G. Q.; Yang, H. R.; Wu, Y. Nanostructure-based thermoelectric conversion: An insight into the feasibility and sustainability for large-scale deployment. Nanoscale 2011, 3, 3555–3562.

[208]

Park, K. C.; Madavali, B.; Kim, E. B.; Koo, K. W.; Hong, S. J. Studies on microstructure and thermoelectric properties of p-type Bi-Sb-Te based alloys by gas atomization and hot extrusion processes. J. Electron. Mater. 2017, 46, 2915–2920.

[209]

Wu, H. J.; Zheng, F. S.; Wu, D.; Ge, Z. H.; Liu, X. Y.; He, J. Q. Advanced electron microscopy for thermoelectric materials. Nano Energy 2015, 13, 626–650.

[210]

Sarbu, I.; Dorca, A. A comprehensive review of solar thermoelectric cooling systems. Int. J. Energy Res. 2018, 42, 395–415.

Nano Research Energy
Article number: e9120034
Cite this article:
Musah J-D, Ilyas AM, Venkatesh S, et al. Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation – A critical review. Nano Research Energy, 2022, 1: e9120034. https://doi.org/10.26599/NRE.2022.9120034

5757

Views

814

Downloads

10

Crossref

38

Scopus

Altmetrics

Received: 04 July 2022
Revised: 05 September 2022
Accepted: 14 September 2022
Published: 21 October 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return