AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Advanced electrochemical energy storage and conversion on graphdiyne interface

Xiaoya Gao1,2Jiaofu Li3Zicheng Zuo1( )
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Show Author Information

Graphical Abstract

Abstract

The research in graphdiyne (GDY) has experienced a rapid growth period in the first decade after its birth. As a new two-dimensional (2D) atomic crystal, GDY has unique structures consisting of both sp and sp2 hybridized carbon atoms, and exhibits many unprecedented intrinsic properties to scientists. Due to the inherent characteristics of GDY, some new phenomena and properties have been discovered in a wide range of research fields. GDY has made substantial breakthroughs in fundamental and applied science, formed innovative scientific concepts, and made great achievements. In these fields, the electrochemical energy storage and conversion are two important and impressive fields for the fundamental applicative investigations. This review focuses on the utilization of GDY as advanced electrochemical interface for the electrochemical energy storage and conversion. It begins with an introduction of the superiorities and inherent compatibilities of GDY as the electrochemical interface. Then, GDY's recent achievements in electrochemical storage and conversion are commented, from which we can appreciate the inherent advantages of GDY as a crucial material for alternating and innovating the electrochemical interface. Finally, new insights into the challenges and further perspectives on the GDY interface for the electrochemical energy storage and conversion are discussed, aiming at prompting in-depth investigation and their performance in practical applications.

References

[1]

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

[2]

Xue, H. R.; Gong, H.; Yamauchi, Y.; Sasaki, T.; Ma, R. Z. Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. Nano Res. Energy 2022, 1, e9120007.

[3]

Zeng, J.; Bi, L. Y.; Cheng, Y. H.; Xu, B. M.; Jen, A. K. Y. Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy 2022, 1, e9120004.

[4]

Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1, e9120002.

[5]

Safaei, J.; Wang, G. X. Progress and prospects of two-dimensional materials for membrane-based osmotic power generation. Nano Res. Energy 2022, 1, e9120008.

[6]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

[7]

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

[8]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009.

[9]

Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 2022, 1, e9120012.

[10]

Olivetti, E. A.; Ceder, G.; Gaustad, G. G.; Fu, X. K. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243.

[11]

Lee, J. S. M.; Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 2020, 120, 2171–2214.

[12]

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

[13]

Chakraborty, G.; Park, I. H.; Medishetty, R.; Vittal, J. J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications. Chem. Rev. 2021, 121, 3751–3891.

[14]

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

[15]

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

[16]

He, B.; Zhang, Q. C.; Pan, Z. H.; Li, L.; Li, C. W.; Ling, Y.; Wang, Z. X.; Chen, M. X.; Wang, Z.; Yao, Y. G. et al. Freestanding metal-organic frameworks and their derivatives: An emerging platform for electrochemical energy storage and conversion. Chem. Rev. 2022, 122, 10087–10125.

[17]

Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

[18]

Li, X. H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.

[19]

Tang, C.; Zhang, Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv. Mater. 2017, 29, 1604103.

[20]

McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687.

[21]

Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651.

[22]

Su, D. S.; Perathoner, S.; Centi, G. Nanocarbons for the development of advanced catalysts. Chem. Rev. 2013, 113, 5782–5816.

[23]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[24]

Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film-foam-film structure for enhanced lithium storage. Angew. Chem., Int. Ed. 2016, 55, 12783–12788.

[25]

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

[26]

Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed. 2019, 58, 4923–4928.

[27]

Hu, Y. Z.; Guo, X. Y.; Shen, T.; Zhu, Y.; Wang, D. L. Hollow porous carbon-confined atomically ordered PtCo3 intermetallics for an efficient oxygen reduction reaction. ACS Catal. 2022, 12, 5380–5387.

[28]

Wu, Q. L.; Jia, Y.; Liu, Q.; Mao, X.; Guo, Q.; Yan, X. C.; Zhao, J. P.; Liu, F. C.; Du, A. J.; Yao, X. D. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem, in press, DOI: 10.1016/j.chempr.2022.06.013.

[29]

Sakamoto, R.; Fukui, N.; Maeda, H.; Matsuoka, R.; Toyoda, R.; Nishihara, H. The accelerating world of graphdiynes. Adv. Mater. 2019, 31, 1804211.

[30]

Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

[31]

Li, C.; Lu, X. L.; Han, Y. Y.; Tang, S. F.; Ding, Y.; Liu, R. R.; Bao, H. H.; Li, Y. L.; Luo, J.; Lu, T. B. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. 2018, 11, 1714–1721.

[32]

Kong, Y.; Li, J. Q.; Zeng, S.; Yin, C.; Tong, L. M.; Zhang, J. Bridging the gap between reality and ideality of graphdiyne: The advances of synthetic methodology. Chem 2020, 6, 1933–1951.

[33]

Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

[34]

Zheng, Z. Q.; Xue, Y. R.; Li, Y. L. A new carbon allotrope: Graphdiyne. Trends Chem. 2022, 4, 754–768.

[35]

Fang, Y.; Xue, Y. R.; Hui, L.; Yu, H. D.; Li, Y. L. Graphdiyne@ janus magnetite for photocatalytic nitrogen fixation. Angew. Chem., Int. Ed. 2021, 60, 3170–3174.

[36]

Wang, F.; Zuo, Z. C.; Li, L.; Li, K.; He, F.; Jiang, Z. Q.; Li, Y. L. Large-area aminated-graphdiyne thin films for direct methanol fuel cells. Angew. Chem., Int. Ed. 2019, 58, 15010–15015.

[37]

Pan, H. H.; Jiang, Z. Q.; Zuo, Z. C.; He, F.; Wang, F.; Li, L.; Chang, Q.; Guan, B.; Li, Y. L. Proton selective anode nanochannel for efficient methanol utilization. Nano Today 2021, 39, 101213.

[38]

Huang, C. S.; Li, Y. L. Structure of 2D graphdiyne and its application in energy fields. Acta Phys. Chim. Sin. 2016, 32, 1314–1329.

[39]

Yu, H. D.; Xue, Y. R.; Li, Y. L. Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications. Adv. Mater. 2019, 31, 1803101.

[40]

Xue, Y. R.; Li, Y. L.; Zhang, J.; Liu, Z. F.; Zhao, Y. L. 2D graphdiyne materials: Challenges and opportunities in energy field. Sci. China Chem. 2018, 61, 765–786.

[41]

An, J.; Zhang, H. Y.; Qi, L.; Li, G. X.; Li, Y. L. Self-expanding ion-transport channels on anodes for fast-charging lithium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202113313.

[42]

Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

[43]

Zuo, Z. C.; Li, Y. L. Applications of graphdiyne in Li+/Na+ battery anodes. Chin. J. Appl. Chem. 2018, 35, 1057–1066. (in Chinese)

[44]

Cheng, S. J.; Zuo, Z. C.; Li, Y. L. Graphdiyne interface: Electrode optimization strategy from microscale to macroscale. Sci. Sin. Chim. 2022, 52, 222–240.

[45]

Liu, J. M.; Chen, C. Y.; Zhao, Y. L. Progress and prospects of graphdiyne-based materials in biomedical applications. Adv. Mater. 2019, 31, 1804386.

[46]

Lu, C.; Yang, Y.; Wang, J.; Fu, R. P.; Zhao, X. X.; Zhao, L.; Ming, Y.; Hu, Y.; Lin, H. Z.; Tao, X. M. et al. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 2018, 9, 752.

[47]

Hui, L.; Zhang, X. T.; Xue, Y. R.; Chen, X.; Fang, Y.; Xing, C. Y.; Liu, Y. X.; Zheng, X. C.; Du, Y. C.; Zhang, C. et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1921–1928.

[48]

Cai, X.; Tang, J.; Zhao, M.; Liu, L.; Yu, Z. B.; Du, J. J.; Bai, L.; Lu, F. S.; Jiu, T.; Li, Y. L. Graphdiyne oxide doping for aggregation control of hole-transport nanolayer in inverted perovskite solar cells. Nano Res. 2022, 15, 9734–9740.

[49]

Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

[50]

Jang, B.; Koo, J.; Park, M.; Lee, H.; Nam, J.; Kwon, Y.; Lee, H. Graphdiyne as a high-capacity lithium ion battery anode material. Appl. Phys. Lett. 2013, 103, 263904.

[51]

Sun, C. H.; Searles, D. J. Lithium storage on graphdiyne predicted by DFT calculations. J. Phys. Chem. C 2012, 116, 26222–26226.

[52]

Mortazavi, B.; Shahrokhi, M.; Zhuang, X. Y.; Rabczuk, T. Boron-graphdiyne: A superstretchable semiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ion storage. J. Mater. Chem. A 2018, 6, 11022–11036.

[53]

Du, H. P.; Yang, H.; Huang, C. S.; He, J. J.; Liu, H. B.; Li, Y. L. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy 2016, 22, 615–622.

[54]

Huang, C. S.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. L.; Li, Y. L. Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481–489.

[55]

Xie, C. P.; Hu, X. L.; Guan, Z. Y.; Li, X. D.; Zhao, F. H.; Song, Y. W.; Li, Y.; Li, X. F.; Wang, N.; Huang, C. S. Tuning the properties of graphdiyne by introducing electron-withdrawing/donating groups. Angew. Chem., Int. Ed. 2020, 59, 13542–13546.

[56]

Wang, N.; Li, X. D.; Tu, Z. Y.; Zhao, F. H.; He, J. J.; Guan, Z. Y.; Huang, C. S.; Yi, Y. P.; Li, Y. L. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem., Int. Ed. 2018, 57, 3968–3973.

[57]

Wang, N.; He, J. J.; Tu, Z. Y.; Yang, Z.; Zhao, F. H.; Li, X. D.; Huang, C. S.; Wang, K.; Jiu, T.; Yi, Y. P. et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage. Angew. Chem., Int. Ed. 2017, 56, 10740–10745.

[58]

Zuo, Z. C.; Li, Y. L. Emerging electrochemical energy applications of graphdiyne. Joule 2019, 3, 899–903.

[59]

Zuo, Z. C.; Wang, D.; Zhang, J.; Lu, F. S.; Li, Y. L. Synthesis and applications of graphdiyne-based metal-free catalysts. Adv. Mater. 2019, 31, 1803762.

[60]

Tang, L.; Meng, X. G.; Deng, D. H.; Bao, X. H. Confinement catalysis with 2D materials for energy conversion. Adv. Mater. 2019, 31, 1901996.

[61]

Zhang, L. P.; Lin, C. Y.; Zhang, D. T.; Gong, L. L.; Zhu, Y. H.; Zhao, Z. H.; Xu, Q.; Li, H. J.; Xia, Z. H. Guiding principles for designing highly efficient metal-free carbon catalysts. Adv. Mater. 2019, 31, 1805252.

[62]

Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

[63]

Liu, L. C.; Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 2021, 6, 244–263.

[64]

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

[65]

Zhang, M. J.; Wang, X. X.; Sun, H. J.; Wang, N. Y.; He, J. J.; Wang, N.; Long, Y. Z.; Huang, C. S.; Li, Y. L. Induced ferromagnetic order of graphdiyne semiconductors by introducing a heteroatom. ACS Cent. Sci. 2020, 6, 950–958.

[66]

Yao, F. T.; Wang, W.; Shi, H. T.; Xu, Z. W.; Zeng, M.; Hu, Y. L.; Liu, L. Y.; Ji, X. Y. Graphynes: Electronic properties, synthesis, and applications in catalysis. ACS Catal. 2021, 11, 14122–14147.

[67]

Jing, Y. H.; Hu, M.; Gao, Y. F.; Guo, L. C.; Sun, Y. On the origin of abnormal phonon transport of graphyne. Int. J. Heat Mass Transfer 2015, 85, 880–889.

[68]

Yue, Q.; Chang, S. L.; Kang, J.; Qin, S. Q.; Li, J. B. Mechanical and electronic properties of graphyne and its family under elastic strain: Theoretical predictions. J. Phys. Chem. C 2013, 117, 14804–14811.

[69]

Cranford, S. W.; Brommer, D. B.; Buehler, M. J. Extended graphynes: Simple scaling laws for stiffness, strength and fracture. Nanoscale 2012, 4, 7797–7809.

[70]

Li, Y. J.; Li, Y. L. Chemical modification and functionalization of graphdiyne. Acta Phys. Chim. Sin. 2018, 34, 992–1013.

[71]

Wang, F.; Zuo, Z. C.; Shang, H.; Zhao, Y. J.; Li, Y. L. Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode. ACS Appl. Mater. Interfaces 2019, 11, 2599–2607.

[72]

Zuo, Z. C.; Shang, H.; Chen, Y. H.; Li, J. F.; Liu, H. B.; Li, Y. J.; Li, Y. L. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun. 2017, 53, 8074–8077.

[73]

Shang, H.; Zuo, Z. C.; Zheng, H. Y.; Li, K.; Tu, Z. Y.; Yi, Y. P.; Liu, H. B.; Li, Y. J.; Li, Y. L. N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy 2018, 44, 144–154.

[74]

Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145–3152.

[75]

Liu, R.; Gao, X.; Zhou, J. Y.; Xu, H.; Li, Z. Z.; Zhang, S. Q.; Xie, Z. Q.; Zhang, J.; Liu, Z. F. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil. Adv. Mater. 2017, 29, 1604665.

[76]

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[77]

Pan, Q. Y.; Liu, H.; Zhao, Y. J.; Chen, S. Q.; Xue, B.; Kan, X. N.; Huang, X. W.; Liu, J.; Li, Z. B. Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Appl. Mater. Interfaces 2019, 11, 2740–2744.

[78]

Li, J. Q.; Zhang, Z. C.; Kong, Y.; Yao, B. W.; Yin, C.; Tong, L. M.; Chen, X. D.; Lu, T. B.; Zhang, J. Synthesis of wafer-scale ultrathin graphdiyne for flexible optoelectronic memory with over 256 storage levels. Chem 2021, 7, 1284–1296.

[79]

Li, J. Q.; Li, S.; Liu, Q.; Yin, C.; Tong, L. M.; Chen, C. G.; Zhang, J. Synthesis of hydrogen-substituted graphyne film for lithium-sulfur battery applications. Small 2019, 15, 1805344.

[80]

Zhao, Z. Q.; Das, S.; Xing, G. L.; Fayon, P.; Heasman, P.; Jay, M.; Bailey, S.; Lambert, C.; Yamada, H.; Wakihara, T. et al. A 3D organically synthesized porous carbon material for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 11952–11956.

[81]

Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600.

[82]

Shi, L.; Xu, A.; Pan, D.; Zhao, T. S. Aqueous proton-selective conduction across two-dimensional graphyne. Nat. Commun. 2019, 10, 1165.

[83]

Xu, J. Y.; Jiang, H. Y.; Shen, Y. T.; Li, X. Z.; Wang, E. G.; Meng, S. Transparent proton transport through a two-dimensional nanomesh material. Nat. Commun. 2019, 10, 3971.

[84]

Cranford, S. W.; Buehler, M. J. Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale 2012, 4, 4587–4593.

[85]

Meng, Z. S.; Zhang, X. R.; Zhang, Y. D.; Gao, H. Q.; Wang, Y. H.; Shi, Q.; Rao, D. W.; Liu, Y. Z.; Deng, K. M.; Lu, R. F. Graphdiyne as a high-efficiency membrane for separating oxygen from harmful gases: A first-principles study. ACS Appl. Mater. Interfaces 2016, 8, 28166–28170.

[86]

Yuan, T. Y.; Xiong, S. J.; Shen, X. H. Coordination of actinide single ions to deformed graphdiyne: Strategy on essential separation processes in nuclear fuel cycle. Angew. Chem., Int. Ed. 2020, 59, 17719–17725.

[87]

Wei, H. H.; Shi, R. C.; Sun, L.; Yu, H. Y.; Gong, J. D.; Liu, C.; Xu, Z. P.; Ni, Y.; Xu, J. L.; Xu, W. T. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 2021, 12, 1068.

[88]

Shang, H.; Zuo, Z. C.; Li, Y. L. Highly lithiophilic graphdiyne nanofilm on 3D free-standing Cu nanowires for high-energy-density electrodes. ACS Appl. Mater. Interfaces 2019, 11, 17678–17685.

[89]

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

[90]

Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.

[91]

Ivanovskii, A. L. Graphynes and graphdyines. Prog. Solid State Chem. 2013, 41, 1–19.

[92]

Bu, H. X.; Zhao, M. W.; Zhang, H. Y.; Wang, X. P.; Xi, Y.; Wang, Z. H. Isoelectronic doping of graphdiyne with boron and nitrogen: Stable configurations and band gap modification. J. Phys. Chem. A 2012, 116, 3934–3939.

[93]

Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for graphene: Graphynes with direction-dependent dirac cones. Phys. Rev. Lett. 2012, 108, 086804.

[94]

Chen, J. M.; Xi, J. Y.; Wang, D.; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443–1448.

[95]

Cranford, S. W.; Buehler, M. J. Mechanical properties of graphyne. Carbon 2011, 49, 4111–4121.

[96]

Shekar, S. C.; Swathi, R. S. Cation−π interactions and rattling motion through two-dimensional carbon networks: Graphene vs graphynes. J. Phys. Chem. C 2015, 119, 8912–8923.

[97]

You, Y.; Manthiram, A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1701785.

[98]

Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

[99]

Shang, H.; Gu, Y.; Wang, Y. B.; Zuo, Z. C. N-doped graphdiyne coating for dendrite-free lithium metal batteries. Chem. -Eur. J. 2020, 26, 5434–5440.

[100]

Jiang, T.; Chen, K.; Wang, J. J.; Hu, Z. L.; Wang, G. L.; Chen, X. D.; Sun, P. F.; Zhang, Q. B.; Yan, C. L.; Zhang, L. Nitrogen-doped graphdiyne nanowall stabilized dendrite-free lithium metal anodes. J. Mater. Chem. A 2019, 7, 27535–27546.

[101]

Gong, S.; Wang, S.; Liu, J. Y.; Guo, Y. G.; Wang, Q. Graphdiyne as an ideal monolayer coating material for lithium-ion battery cathodes with ultralow areal density and ultrafast Li penetration. J. Mater. Chem. A 2018, 6, 12630–12636.

[102]

Chang, Q.; Li, L.; Zuo, Z. C.; Li, Y. L. Sp-carbon-enabled interface for high-performance graphite anode. Nano Today 2022, 44, 101478.

[103]

Chang, Z.; Qiao, Y.; Deng, H.; Yang, H. J.; He, P.; Zhou, H. S. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy Environ. Sci. 2020, 13, 1197–1204.

[104]

Ye, C. C.; Tu, W. Q.; Yin, L. M.; Zheng, Q. F.; Wang, C.; Zhong, Y. T.; Zhang, Y. G.; Huang, Q. M.; Xu, K.; Li, W. S. Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes. J. Mater. Chem. A 2018, 6, 17642–17652.

[105]

Han, J. G.; Jeong, M. Y.; Kim, K.; Park, C.; Sung, C. H.; Bak, D. W.; Kim, K. H.; Jeong, K. M.; Choi, N. S. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. J. Power Sources 2020, 446, 227366.

[106]

Chang, Q.; Wang, F.; Zuo, Z. C.; He, F.; Zhao, Y.; Wang, F. Y.; Li, Y. L. High voltage-stabilized graphdiyne cathode interface. Small 2021, 17, 2102066.

[107]

Asl, H. Y.; Manthiram, A. Reining in dissolved transition-metal ions. Science 2020, 369, 140–141.

[108]

Lee, Y. M.; Nam, K. M.; Hwang, E. H.; Kwon, Y. G.; Kang, D. H.; Kim, S. S.; Song, S. W. Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2 battery cathodes. J. Phys. Chem. C 2014, 118, 10631–10639.

[109]

Zhang, Z. W.; Yang, J. L.; Huang, W.; Wang, H. S.; Zhou, W. J.; Li, Y. B.; Li, Y. Z.; Xu, J. W.; Huang, W. X.; Chiu, W. et al. Cathode-electrolyte interphase in lithium batteries revealed by cryogenic electron microscopy. Matter 2021, 4, 302–312.

[110]

Li, C.; Liu, B. W.; Jiang, N. Y.; Ding, Y. Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. Nano Res. Energy, in press, DOI: 10.26599/NRE.2022.9120031.

[111]

Piao, J. Y.; Gu, L.; Wei, Z. X.; Ma, J. M.; Wu, J. P.; Yang, W. L.; Gong, Y.; Sun, Y. G.; Duan, S. Y.; Tao, X. S. et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries. J. Am. Chem. Soc. 2019, 141, 4900–4907.

[112]

Cho, J.; Kim, H.; Park, B. Comparison of overcharge behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells. J. Electrochem. Soc. 2004, 151, A1707–A1711.

[113]

Kim, H.; Kim, M. G.; Jeong, H. Y.; Nam, H.; Cho, J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles. Nano Lett. 2015, 15, 2111–2119.

[114]

Payandeh, S.; Strauss, F.; Mazilkin, A.; Kondrakov, A.; Brezesinski, T. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Res. Energy, in press, DOI: 10.26599/NRE.2022.9120016.

[115]

Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F. et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.

[116]

Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Lu, F. S.; Li, Y. L. A universal strategy for constructing seamless graphdiyne on metal oxides to stabilize the electrochemical structure and interface. Adv. Mater. 2019, 31, 1806272.

[117]

Shang, H.; Zuo, Z. C.; Yu, L.; Wang, F.; He, F.; Li, Y. L. Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries. Adv. Mater. 2018, 30, 1801459.

[118]

Li, L.; Zuo, Z. C.; Pan, H. H.; Chang, Q.; Gao, X. Y.; Zhai, X. G.; Li, Y. L. An integrated interfacial engineering for efficiently confining the asymmetric strain in scalable silicon anode. J. Power Sources 2022, 524, 231086.

[119]

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

[120]

Kim, H.; Choi, W.; Yoon, J.; Um, J. H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W. S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976.

[121]

Gao, X. Y.; Zuo, Z. C.; Wang, F.; Chang, Q.; Pan, H. H.; Li, L.; He, F.; Li, Y. L. Controlling precise voids in the ion-selective carbon shell for zero-strain electrode. Energy Storage Mater. 2022, 45, 110–118.

[122]

Park, M.; Shin, D. S.; Ryu, J.; Choi, M.; Park, N.; Hong, S. Y.; Cho, J. Organic-catholyte-containing flexible rechargeable lithium batteries. Adv. Mater. 2015, 27, 5141–5146.

[123]

Liang, Y. L.; Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2018, 2, 1690–1706.

[124]

Ham, Y.; Ri, V.; Kim, J.; Yoon, Y.; Lee, J.; Kang, K.; An, K. S.; Kim, C.; Jeon, S. Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Res. 2021, 14, 1382–1389.

[125]

Lee, K.; Serdiuk, I. E.; Kwon, G.; Min, D. J.; Kang, K.; Park, S. Y.; Kwon, J. E. Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: Small structural reorganization for faster charging and narrow operating voltage. Energy Environ. Sci. 2020, 13, 4142–4156.

[126]

Lee, S.; Hong, J.; Kang, K. Redox-active organic compounds for future sustainable energy storage system. Adv. Energy Mater. 2020, 10, 2001445.

[127]

Lu, Y.; Cai, Y. C.; Zhang, Q.; Chen, J. Insights into redox processes and correlated performance of organic carbonyl electrode materials in rechargeable batteries. Adv. Mater. 2022, 34, 2104150.

[128]

Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127–142.

[129]

Li, L.; Zuo, Z. C.; Wang, F.; Gao, J. C.; Cao, A. M.; He, F.; Li, Y. L. In situ coating graphdiyne for high-energy-density and stable organic cathodes. Adv. Mater. 2020, 32, 2000140.

[130]

Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Li, Y. L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy 2020, 68, 104307.

[131]

Kim, J. H.; Choi, J.; Seo, J.; Kwon, J.; Paik, U. Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 11203–11206.

[132]

Yu, X. W.; Joseph, J.; Manthiram, A. Polymer lithium-sulfur batteries with a Nafion membrane and an advanced sulfur electrode. J. Mater. Chem. A 2015, 3, 15683–15691.

[133]

Shen, C. F.; Ge, M. Y.; Zhang, A. Y.; Fang, X.; Liu, Y. H.; Rong, J. P.; Zhou, C. W. Silicon(lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy 2016, 19, 68–77.

[134]

Shang, H.; Zuo, Z. C.; Li, L.; Wang, F.; Liu, H. B.; Li, Y. J.; Li, Y. L. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew. Chem., Int. Ed. 2018, 57, 774–778.

[135]

Zuo, Z. C.; He, F.; Wang, F.; Li, L.; Li, Y. L. Spontaneously splitting copper nanowires into quantum dots on graphdiyne for suppressing lithium dendrites. Adv. Mater. 2020, 32, 2004379.

[136]

Shang, H.; Zuo, Z. C.; Dong, X.; Wang, F.; Lu, F. S.; Zheng, H. Y.; Li, K.; Li, Y. L. Efficiently suppressing lithium dendrites on atomic level by ultrafiltration membrane of graphdiyne. Mater. Today Energy 2018, 10, 191–199.

[137]

Yang, Q.; Guo, Y.; Yan, B. X.; Wang, C. D.; Liu, Z. X.; Huang, Z. D.; Wang, Y. K.; Li, Y. R.; Li, H. F.; Song, L. et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 2020, 32, 2001755.

[138]

Yang, Q.; Li, L.; Hussain, T.; Wang, D. H.; Hui, L.; Guo, Y.; Liang, G. J.; Li, X. L.; Chen, Z.; Huang, Z. D. et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202112304.

[139]

Chandra Shekar, S.; Swathi, R. S. Rattling motion of alkali metal ions through the cavities of model compounds of graphyne and graphdiyne. J. Phys. Chem. A 2013, 117, 8632–8641.

[140]

Zhang, H. Y.; Zhao, M. W.; He, X. J.; Wang, Z. H.; Zhang, X. J.; Liu, X. D. High mobility and high storage capacity of lithium in sp-sp2 hybridized carbon network: The case of graphyne. J. Phys. Chem. C 2011, 115, 8845–8850.

[141]

Wang, L. N.; Luo, G. F. Atomistic mechanism and long-term stability of using chlorinated graphdiyne film to reduce lithium dendrites in rechargeable lithium metal batteries. Nano Lett. 2021, 21, 7284–7290.

[142]

Zhao, X. R.; Sasaki, K. Advanced Pt-based core-shell electrocatalysts for fuel cell cathodes. Acc. Chem. Res. 2022, 55, 1226–1236.

[143]

Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 2021, 16, 140–147.

[144]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[145]

Gao, C. B.; Lyu, F.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

[146]

Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

[147]

Kim, C.; Dionigi, F.; Beermann, V.; Wang, X. L.; Möller, T.; Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, 1805617.

[148]

Mortazavi, B.; Javvaji, B.; Shojaei, F.; Rabczuk, T.; Shapeev, A. V.; Zhuang, X. Y. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 2021, 82, 105716.

[149]

Li, J.; Gao, X.; Liu, B.; Feng, Q. L.; Li, X. B.; Huang, M. Y.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 2016, 138, 3954–3957.

[150]

Hu, G. L.; He, J. Y.; Li, Y. J. Controllable synthesis of two-dimensional graphdiyne films catalyzed by a copper(Ⅱ) trichloro complex. ACS Catal. 2022, 12, 6712–6721.

[151]

Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

[152]

Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.

[153]

Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13291–13296.

[154]

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

[155]

Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.

[156]

Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nano 2012, 7, 394–400.

[157]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[158]

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

[159]

Shao, Y. Y.; Dodelet, J. P.; Wu, G.; Zelenay, P. PGM-free cathode catalysts for PEM fuel cells: A mini-review on stability challenges. Adv. Mater. 2019, 31, 1807615.

[160]

Gottlieb, E.; Matyjaszewski, K.; Kowalewski, T. Polymer-based synthetic routes to carbon-based metal-free catalysts. Adv. Mater. 2019, 31, 1804626.

[161]

Singh, S. K.; Takeyasu, K.; Nakamura, J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 2019, 31, 1804297.

[162]

Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

[163]

Lv, Q.; Si, W. Y.; He, J. J.; Sun, L.; Zhang, C. F.; Wang, N.; Yang, Z.; Li, X. D.; Wang, X.; Deng, W. Q. et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 2018, 9, 3376.

[164]

Lv, Q.; Si, W. Y.; Yang, Z.; Wang, N.; Tu, Z. Y.; Yi, Y. P.; Huang, C. S.; Jiang, L.; Zhang, M. J.; He, J. J. et al. Nitrogen-doped porous graphdiyne: A highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 29744–29752.

[165]

Zhang, S. S.; Cai, Y. J.; He, H. Y.; Zhang, Y. Q.; Liu, R. J.; Cao, H. B.; Wang, M.; Liu, J. J.; Zhang, G. J.; Li, Y. L. et al. Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 2016, 4, 4738–4744.

[166]

Gao, Y.; Cai, Z. W.; Wu, X. C.; Lv, Z. L.; Wu, P.; Cai, C. X. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 2018, 8, 10364–10374.

[167]

Li, M. P.; Lv, Q.; Si, W. Y.; Hou, Z. F.; Huang, C. S. Sp-hybridized nitrogen as new anchoring sites of iron single atoms to boost the oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202208238.

[168]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy, in press, DOI: 10.26599/NRE.2022.9120028.

[169]

Wang, X. S.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1803625.

[170]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[171]

Hui, L.; Xue, Y. R.; Liu, Y. X.; Li, Y. L. Efficient hydrogen evolution on nanoscale graphdiyne. Small 2021, 17, 2006136.

[172]

Xing, C. Y.; Xue, Y. R.; Huang, B. L.; Yu, H. D.; Hui, L.; Fang, Y.; Liu, Y. X.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Fluorographdiyne: A metal-free catalyst for applications in water reduction and oxidation. Angew. Chem., Int. Ed. 2019, 58, 13897–13903.

[173]

Liu, Y. X.; Gao, Y.; He, F.; Xue, Y. R.; Li, Y. L. Controlled growth interface of charge transfer salts of nickel-7,7,8,8-tetracyanoquinodimethane on surface of graphdiyne. CCS Chem., in press, DOI: 10.31635/ccschem.022.202202005.

[174]

Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Li, Y. J.; Zuo, Z. C.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Efficient hydrogen production on a 3D flexible heterojunction material. Adv. Mater. 2018, 30, 1707082.

[175]

Hui, L.; Xue, Y. R.; Huang, B. L.; Yu, H. D.; Zhang, C.; Zhang, D. Y.; Jia, D. Z.; Zhao, Y. J.; Li, Y. J.; Liu, H. B. et al. Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nat. Commun. 2018, 9, 5309.

[176]

Zhu, C. R.; Wang, A. L.; Xiao, W.; Chao, D. L.; Zhang, X.; Tiep, N. H.; Chen, S.; Kang, J. N.; Wang, X.; Ding, J. et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 2018, 30, 1705516.

[177]

Wang, H. M.; Chen, Z. N.; Wu, D. S.; Cao, M. N.; Sun, F. F.; Zhang, H.; You, H. H.; Zhuang, W.; Cao, R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through au modification in core-shell alloy structure. J. Am. Chem. Soc. 2021, 143, 4639–4645.

[178]

Yao, Y.; Zhu, Y. H.; Pan, C. Q.; Wang, C. Y.; Hu, S. Y.; Xiao, W.; Chi, X.; Fang, Y. R.; Yang, J.; Deng, H. T. et al. Interfacial sp C-O-Mo Hybridization originated high-current density hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 8720–8730.

[179]

Du, Y. C.; Xue, Y. R.; Zhang, C.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; He, F.; Li, Y. L. Photoinduced electrocatalysis on 3D flexible OsOx quantum dots. Adv. Energy Mater. 2021, 11, 2100234.

[180]

Wang, Z. Q.; Zheng, Z. Q.; Xue, Y. R.; He, F.; Li, Y. L. Acidic water oxidation on quantum dots of IrOx/graphdiyne. Adv. Energy Mater. 2021, 11, 2101138.

[181]

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

[182]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[183]

Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.

[184]

Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Fang, Y.; Liu, Y. X.; Chen, X.; Zhang, D. Y.; Huang, B. L.; Li, Y. L. Graphdiyne-based metal atomic catalysts for synthesizing ammonia. Natl. Sci. Rev. 2021, 8, nwaa213.

[185]

Zheng, Z. Q.; Qi, L.; Xue, Y. R.; Li, Y. L. Highly selective and durable of monodispersed metal atoms in ammonia production. Nano Today 2022, 43, 101431.

[186]

Zou, H. Y.; Rong, W. F.; Wei, S. T.; Ji, Y. F.; Duan, L. L. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proc. Natl. Acad. Sci. USA 2020, 117, 29462–29468.

[187]

Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q. et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis. Angew. Chem., Int. Ed. 2020, 59, 13021–13027.

[188]

Liu, Y. X.; Xue, Y. R.; Hui, L.; Yu, H. D.; Fang, Y.; He, F.; Li, Y. L. Porous graphdiyne loading CoOx quantum dots for fixation nitrogen reaction. Nano Energy 2021, 89, 106333.

[189]

Zou, H. Y.; Rong, W. F.; Long, B. H.; Ji, Y. F.; Duan, L. L. Corrosion-induced Cl-doped ultrathin graphdiyne toward electrocatalytic nitrogen reduction at ambient conditions. ACS Catal. 2019, 9, 10649–10655.

[190]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[191]

Zhang, W. J.; Jiang, M. H.; Yang, S. Y.; Hu, Y.; Mu, B.; Tie, Z. X.; Jin, Z. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res. Energy, in press, DOI: 10.26599/NRE.2022.9120033.

[192]

Han, B. X. Phase engineering of metal nanomaterials for high-performance electrochemical CO2 reduction. Acta Phys. Chim. Sin. 2022, 38, 2012011.

[193]

Cui, X. J.; Shi, F. Selective conversion of CO2 by single-site catalysts. Acta Phys. Chim. Sin. 2021, 37, 2006080.

[194]

Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.

[195]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[196]

Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev. 2018, 118, 4631–4701.

[197]

Wang, Y. X.; Su, H. Y.; He, Y. H.; Li, L. G.; Zhu, S. Q.; Shen, H.; Xie, P. F.; Fu, X. B.; Zhou, G. Y.; Feng, C. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217–12314.

[198]

Du, Y. C.; Zheng, X. C.; Xue, Y. R.; Li, Y. L. Bismuth/graphdiyne heterostructure for electrocatalytic conversion of CO2 to formate. Chem. Res. Chin. Univ., in press, DOI: 10.1007/s40242-022-2091-0.

[199]

Gu, H. L.; Zhong, L. X.; Shi, G. S.; Li, J. Q.; Yu, K.; Li, J.; Zhang, S.; Zhu, C. Y.; Chen, S. H.; Yang, C. L. et al. Graphdiyne/graphene heterostructure: A universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 8679–8688.

[200]

Shi, G. D.; Xie, Y. L.; Du, L. L.; Fu, X. L.; Chen, X. J.; Xie, W. J.; Lu, T. B.; Yuan, M. J.; Wang, M. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4. Angew. Chem., Int. Ed. 2022, 61, e202203569.

[201]

Rong, W. F.; Zou, H. Y.; Zang, W. J.; Xi, S. B.; Wei, S. T.; Long, B. H.; Hu, J. H.; Ji, Y. F.; Duan, L. L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 466–472.

[202]

Wu, P.; Du, P.; Zhang, H.; Cai, C. X. Graphdiyne as a metal-free catalyst for low-temperature CO oxidation. Phys. Chem. Chem. Phys. 2014, 16, 5640–5648.

[203]

Chen, L. X.; Jiang, M.; Lu, Z. L.; Gao, C.; Chen, Z. W.; Singh, C. V. Two-dimensional graphdiyne-confined platinum catalyst for hydrogen evolution and oxygen reduction reactions. ACS Appl. Mater. Interfaces 2021, 13, 47541–47548.

[204]

Kang, B. T.; Shi, H.; Wu, S.; Zhao, W.; Ai, H. Q.; Lee, J. Y. Revealing the importance of nitrogen doping site in enhancing the oxygen reduction reaction on β-graphyne. Carbon 2017, 123, 415–420.

[205]

Kong, X. K.; Huang, Y. M.; Liu, Q. C. Two-dimensional boron-doped graphyne nanosheet: A new metal-free catalyst for oxygen evolution reaction. Carbon 2017, 123, 558–564.

[206]

Lin, Z. Z. Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation. Carbon 2016, 108, 343–350.

[207]

He, F.; Li, Y. L. Advances on theory and experiments of the energy applications in graphdiyne. CCS Chem., in press, DOI: 10.31635/ccschem.022.202202328.

[208]

Sun, M. Z.; Wong, H. H.; Wu, T.; Dougherty, A. W.; Huang, B. L. Entanglement of spatial and energy segmentation for C1 pathways in CO2 reduction on carbon skeleton supported atomic catalysts. Adv. Energy Mater. 2022, 12, 2103781.

[209]

Li, M. Y.; Cui, Y.; Zhang, X. L.; Luo, Y.; Dai, Y. X.; Huang, Y. C. Screening a suitable mo form supported on graphdiyne for effectively electrocatalytic N2 reduction reaction: From atomic catalyst to cluster catalyst. J. Phys. Chem. Lett. 2020, 11, 8128–8137.

[210]

Chen, X.; Lin, Z. Z. Single-layer graphdiyne-covered Pt(111) surface: Improved catalysis confined under two-dimensional overlayer. J. Nanopart. Res. 2018, 20, 136.

[211]

Li, M.; Wang, Z. K.; Kang, T. N.; Yang, Y. G.; Gao, X. Y.; Hsu, C. S.; Li, Y. L.; Liao, L. S. Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy 2018, 43, 47–54.

[212]

Cao, D.; Xu, H. X.; Cheng, D. J. Construction of defect-rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values. Adv. Energy Mater. 2020, 10, 1903038.

Nano Research Energy
Article number: 9120036
Cite this article:
Gao X, Li J, Zuo Z. Advanced electrochemical energy storage and conversion on graphdiyne interface. Nano Research Energy, 2022, 1: 9120036. https://doi.org/10.26599/NRE.2022.9120036

5291

Views

912

Downloads

30

Crossref

32

Scopus

Altmetrics

Received: 21 July 2022
Revised: 05 October 2022
Accepted: 07 October 2022
Published: 25 October 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return