AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (20.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access | Online First

A new opportunity for biomass-derived carbon in highly stable Li-O2 battery: A review

Guanjun LiuShaojie QinXiping ZhangDan YouYanjia ZhangXiaoyuan ZengYiyong ZhangZiyi Zhu( )Yingjie Zhang( )Xue Li( )
National and Local Joint Engineering Research Center of Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Show Author Information

Graphical Abstract

Abstract

Lithium-oxygen (Li-O2) battery is notable for the high theoretical energy density, and its widespread adoption has the potential to fundamentally transform the energy consumption landscape. However, the development of Li-O2 batteries has been hindered by issues such as slow reaction kinetics, high overpotential, and unstable cycle life. Rational design of cathode materials has emerged as an effective strategy for addressing these challenges. Biomass, a renewable resource, holds significant importance in the fabrication of derived carbon cathode with exceptional performance; this efficacy is largely due to its intrinsic pore structure and the presence of heteroatoms, representing a significant advancement in the field. This review outlines optimization strategies for biomass-derived carbon cathode based on the reaction mechanism of Li-O2 batteries. It introduces cross-scale characterization methods to analyze the properties of the carbon materials and explores the theoretical underpinnings of functional atom doping as a means to enhance electrochemical performance. Recent advancements in utilizing biomass-derived carbon as a porous cathode for Li-O2 batteries are assessed, highlighting the relationship between microstructural development and performance variations. Furthermore, a succinct overview of the challenges faced by biomass-derived carbon-based Li-O2 batteries is provided, along with proposed perspectives on the direction of development. This work seeks to improve the stability and catalytic efficiency of biomass-derived carbon cathode, ultimately aiming to facilitate the broader commercial application of Li-O2 battery technology.

References

[1]

Degen, F.; Winter, M.; Bendig, D.; Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 2023, 8, 1284–1295.

[2]

Xu, J. J.; Cai, X. Y.; Cai, S. M.; Shao, Y. X.; Hu, C.; Lu, S. R.; Ding, S. J. High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy Environ. Mater. 2023, 6, e12450.

[3]

Wang, Y. J.; Zhang, X. C.; Li, K. Q.; Zhao, G. H.; Chen, Z. H. Perspectives and challenges for future lithium-ion battery control and management. eTransportation 2023, 18, 100260.

[4]

Gong, Y.; Li, J.; Yang, K.; Li, S. Y.; Xu, M.; Zhang, G. P.; Shi, Y.; Cai, Q.; Li, H. X.; Zhao, Y. L. Towards practical application of Li–S battery with high sulfur loading and lean electrolyte: Will carbon-based hosts win this race. Nano-Micro Lett. 2023, 15, 150.

[5]

Lee, J. S.; Tai Kim, S.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.

[6]

Dou, Y. Y.; Xing, S. C.; Zhang, Z.; Zhou, Z. Solving the singlet oxygen puzzle in metal-O2 batteries: Current progress and future directions. Electrochem. Energy Rev. 2024, 7, 6.

[7]

Gallagher, K. G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V. Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 2014, 7, 1555–1563.

[8]

Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558–6625.

[9]

Littauer, E. L.; Tsai, K. C. Anodic behavior of lithium in aqueous electrolytes: II. Mechanical passivation. J. Electrochem. Soc. 1976, 123, 964–969.

[10]

Shu, C. Z.; Huang, R.; Wang, J.; Su, D. S. Enhanced cyclability of rechargeable Li–O2 batteries enabled by boron carbide. RSC Adv. 2015, 5, 103019–103022.

[11]

Zhang, Z. C.; Huang, D. L.; Xing, S. C.; Li, M. H.; Wu, J.; Zhang, Z.; Dou, Y. Y.; Zhou, Z. Unleashing the potential of Li–O2 batteries with electronic modulation and lattice strain in pre-lithiated electrocatalysts. Chem. Sci. 2024, 15, 13209–13217.

[12]
Bai, T. S.; Wang, J. X.; Zhang, H. Q.; Ji, F. J.; Song, W.; Xiao, S. Y.; Gao, D. D.; Lu, J. Y.; Ci, L.; Li, D. P. Atomic Ni-catalyzed cathode and stabilized Li metal anode for high-performance Li–O2 batteries. eScience, in press, DOI: 10.1016/j.esci.2024.100310.
[13]

Dou, Y. Y.; Xie, Z. J.; Wei, Y. J.; Peng, Z. Q.; Zhou, Z. Redox mediators for high-performance lithium-oxygen batteries. Nat. Sci. Rev. 2022, 9, nwac040.

[14]

Cao, D.; Bai, Y.; Zhang, J. F.; Tan, G. Q.; Wu, C. Irreplaceable carbon boosts Li–O2 batteries: From mechanism research to practical application. Nano Energy 2021, 89, 106464.

[15]

Jiang, F. L.; Ma, L. P.; Sun, J. Y.; Guo, L. M.; Peng, Z. Q.; Cui, Z. H.; Li, Y. Q.; Guo, X. X.; Zhang, T. Deciphering the enigma of Li2CO3 oxidation using a solid-state Li-air battery configuration. ACS Appl. Mater. Interfaces 2021, 13, 14321–14326.

[16]

Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 2013, 12, 1050–1056.

[17]

Li, F. J.; Chen, J. Mechanistic evolution of aprotic lithium-oxygen batteries. Adv. Energy Mater. 2017, 7, 1602934.

[18]

Adams, B. D.; Black, R.; Williams, Z.; Fernandes, R.; Cuisinier, M.; Berg, E. J.; Novak, P.; Murphy, G. K.; Nazar, L. F. Towards a stable organic electrolyte for the lithium oxygen battery. Adv. Energy Mater. 2015, 5, 1400867.

[19]

Oh, G.; Seo, S.; Kim, W.; Cho, Y.; Kwon, H.; Kim, S.; Noh, S.; Kwon, E.; Oh, Y.; Song, J. et al. Seed layer formation on carbon electrodes to control Li2O2 discharge products for practical Li–O2 batteries with high energy density and reversibility. ACS Appl. Mater. Interfaces 2021, 13, 13200–13211.

[20]

Jamesh, M. I.; Moni, P.; Prakash, A. S.; Harb, M. ORR/OER activity and zinc-air battery performance of various kinds of graphene-based air catalysts. Mater. Sci. Energy Technol. 2021, 4, 1–22.

[21]

Xiao, L.; Li, E. W.; Yi, J. Y.; Meng, W.; Deng, B. H.; Liu, J. P. Enhanced performance of solid-state Li–O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Metals 2018, 37, 527–535.

[22]

Rao, P.; Wu, D. X.; Wang, T. J.; Li, J.; Deng, P. L.; Chen, Q.; Shen, Y. J.; Chen, Y.; Tian, X. L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399–404.

[23]

Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958.

[24]

Mirzaeian, M.; Hall, P. J. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim. Acta 2009, 54, 7444–7451.

[25]

Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961.

[26]

Tran, C.; Yang, X. Q.; Qu, D. Y. Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J. Power Sources 2010, 195, 2057–2063.

[27]

Zhu, Z. Y.; Men, Y.; Zhang, W. J.; Yang, W. H.; Wang, F.; Zhang, Y. J.; Zhang, Y. Y.; Zeng, X. Y.; Xiao, J.; Tang, C. et al. Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems. eScience 2024, 4, 100249.

[28]

Zhou, J.; Hu, H. Y.; Li, H. Q.; Chen, Z. P.; Yuan, C. Z.; He, X. J. Advanced carbon-based materials for Na, K, and Zn ion hybrid capacitors. Rare Metals 2023, 42, 719–739.

[29]

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

[30]

Wang, D.; Mu, X. W.; He, P.; Zhou, H. S. Materials for advanced Li–O2 batteries: Explorations, challenges and prospects. Mater. Today 2019, 26, 87–99.

[31]

Liu, Y.; Cai, J. Y.; Zhou, J. B.; Zang, Y. P.; Zheng, X. S.; Zhu, Z. X.; Liu, B.; Wang, G. M.; Qian, Y. T. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries. eScience 2022, 2, 389–398.

[32]

Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Lithium–oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.

[33]

Xing, S. C.; Zhang, Z. C.; Dou, Y. Y.; Li, M. H.; Wu, J.; Zhang, Z.; Zhou, Z. An efficient multifunctional soluble catalyst for Li–O2 batteries. CCS Chem. 2024, 6, 1810–1820.

[34]

Lyu, Z. Y.; Zhou, Y.; Dai, W. R.; Cui, X. H.; Lai, M.; Wang, L.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li–O2 batteries. Chem. Soc. Rev. 2017, 46, 6046–6072.

[35]

Luo, L. L.; Liu, B.; Song, S. D.; Xu, W.; Zhang, J. G.; Wang, C. M. Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 2017, 12, 535–539.

[36]

Wang, H. F.; Wang, X. X.; Li, M. L.; Zheng, L. J.; Guan, D. H.; Huang, X. L.; Xu, J. J.; Yu, J. H. Porous materials applied in nonaqueous Li–O2 batteries: Status and perspectives. Adv. Mater. 2020, 32, 2002559.

[37]

Kang, S.; Mo, Y. F.; Ong, S. P.; Ceder, G. A facile mechanism for recharging Li2O2 in Li–O2 batteries. Chem. Mater. 2013, 25, 3328–3336.

[38]

Cui, Q. H.; Zhang, Y. L.; Ma, S. C.; Peng, Z. Q. Li2O2 oxidation: The charging reaction in the aprotic Li–O2 batteries. Sci. Bull. 2015, 60, 1227–1234.

[39]

Padbury, R.; Zhang, X. W. Lithium–oxygen batteries-limiting factors that affect performance. J. Power Sources 2011, 196, 4436–4444.

[40]

Mo, Y. F.; Ong, S. P.; Ceder, G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery. Phys. Rev. B 2011, 84, 205446.

[41]

McCloskey, B. D.; Garcia, J. M.; Luntz, A. C. Chemical and electrochemical differences in nonaqueous Li–O2 and Na–O2 batteries. J. Phys. Chem. Lett. 2014, 5, 1230–1235.

[42]

Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J.; Zhang, J. G. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487.

[43]

Soltani, N.; Bahrami, A.; Giebeler, L.; Gemming, T.; Mikhailova, D. Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Prog. Energy Combust. Sci. 2021, 87, 100929.

[44]

Yang, C. Y.; Yang C. H. Recent progress of hard carbon anode materials for sodium ion batteries. Chem. J. Chin. Univ. 2023, 44, 162–177.

[45]

Cowlard, F. C.; Lewis, J. C. Vitreous carbon–a new form of carbon. J. Mater. Sci. 1967, 2, 507–512.

[46]

Warren, B. E. X-ray diffraction in random layer lattices. Phys. Rev. 1941, 59, 693–698.

[47]

Franklin, R. E. The interpretation of diffuse X-ray diagrams of carbon. Acta Crystallogr. 1950, 3, 107–121.

[48]

Pothaya, S.; Poochai, C.; Tammanoon, N.; Chuminjak, Y.; Kongthong, T.; Lomas, T.; Sriprachuabwong, C.; Tuantranont, A. Bamboo-derived hard carbon/carbon nanotube composites as anode material for long-life sodium-ion batteries with high charge/discharge capacities. Rare Metals 2024, 43, 124–137.

[49]

Bokobza, L.; Bruneel, J. L.; Couzi, M. Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C 2015, 1, 77–94.

[50]

Yang, C. Y.; Zhong, W. T.; Liu, Y. Q.; Deng, Q.; Cheng, Q.; Liu, X. Z.; Yang, C. H. Regulating solid electrolyte interphase film on fluorine-doped hard carbon anode for sodium-ion battery. Carbon Energy 2024, 6, e503.

[51]

Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930.

[52]

Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

[53]

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.

[54]

Zhu, Z. Y.; Liang, F.; Zhou, Z. R.; Zeng, X. Y.; Wang, D.; Dong, P.; Zhao, J. B.; Sun, S. G.; Li, X. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A 2018, 6, 1513–1522.

[55]

Zhu, Z. Y.; Zeng, X. Y.; Wu, H.; Wang, Y. X.; Cheng, H. Y.; Dong, P.; Li, X.; Zhang, Y. J.; Liu, H. K. Green energy application technology of litchi pericarp-derived carbon material with high performance. J. Clean. Prod. 2021, 286, 124960.

[56]

Zhang, Y. J.; Cheng, H. Y.; Liu, J. M.; Li, X.; Zhu, Z. Y. Laver-derived carbon as an anode for SIBs with excellent electrochemical performance. Int. J. Electrochem. Sci. 2020, 15, 5144–5153.

[57]

Deng, B. L.; Huang, Q. H.; Zhang, W. J.; Liu, J. M.; Meng, Q.; Zhu, Z. Y.; Zhong, W. T.; Li, X.; Zhang, Y. J. Design high performance biomass-derived renewable carbon material for electric energy storage system. J. Clean. Prod. 2021, 309, 127391.

[58]

Zhu, Z. Y.; Zhong, W. T.; Zhang, Y. J.; Dong, P.; Sun, S. G.; Zhang, Y. J.; Li, X. Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. Carbon Energy 2021, 3, 541–553.

[59]

Díaz, J.; Paolicelli, G.; Ferrer, S.; Comin, F. Separation of the sp3 and sp2 components in the C 1s photoemission spectra of amorphous carbon films. Phys. Rev. B: Condens Matter 1996, 54, 8064–8069.

[60]

Li, X.; Zeng, X. Y.; Ren, T.; Zhao, J. B.; Zhu, Z. Y.; Sun, S. G.; Zhang, Y. J. The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. J. Alloys Compd. 2019, 787, 229–238.

[61]

Zhu, Z. Y.; Li, X.; Zhang, Z.; Meng, Q.; Zhang, W. J.; Dong, P.; Zhang, Y. J. N/S codoping modification based on the metal organic framework-derived carbon to improve the electrochemical performance of different energy storage devices. J. Alloys Compd. 2022, 74, 394–403.

[62]

Zhou, J. Q.; Zhang, S. L.; Zhou, Y. N.; Tang, W.; Yang, J. H.; Peng, C. X.; Guo, Z. P. Biomass-derived carbon materials for high-performance supercapacitors: Current status and perspective. Electrochem. Energy Rev. 2021, 4, 219–248.

[63]

Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M. A.; Kakimoto, M.; Miyata, S. Interplay between nitrogen dopants and native point defects in graphene. Phys. Rev. B 2012, 85, 165439.

[64]

Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O. 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014, 26, 40–67.

[65]

Lee, W. J.; Lim, J.; Kim, S. O. Nitrogen dopants in carbon nanomaterials: Defects or a new opportunity. Small Methods 2017, 1, 1600014.

[66]

Xiong, Y.; Zhang, Y. F.; Zhu, C. L.; Yang, L.; Liang, H. Y.; Shi, J.; Chen, J. W.; Tian, W. Q.; Liu, S.; Li, Z. et al. Carbon cathode with heteroatom doping and ultrahigh surface area enabling enhanced capacitive behavior for potassium-ion hybrid capacitors. Rare Metals 2024, 43, 2136–2149.

[67]

Kondo, T.; Casolo, S.; Suzuki, T.; Shikano, T.; Sakurai, M.; Harada, Y.; Saito, M.; Oshima, M.; Trioni, M. I.; Tantardini, G. F. et al. Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms. Phys. Rev. B 2012, 86, 035436.

[68]

Fujimoto, Y.; Saito, S. Formation, stabilities, and electronic properties of nitrogen defects in graphene. Phys. Rev. B 2011, 84, 245446.

[69]

Kim, H. S.; Kim, H. S.; Kim, S. S.; Kim, Y. H. Atomistic mechanisms of codoping-induced p- to n-type conversion in nitrogen-doped graphene. Nanoscale 2014, 6, 14911–14918.

[70]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[71]

Yang, H.; Liu, Y. F.; Liu, X. L.; Wang, X. K.; Tian, H.; Waterhouse, G. I. N.; Kruger, P. E.; Telfer, S. G.; Ma, S. Q. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2022, 2, 227–234.

[72]

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

[73]

Wei, J. W.; Hu, H. F.; Zeng, H.; Wang, Z. Y.; Wang, L.; Peng, P. Effects of nitrogen in Stone-Wales defect on the electronic transport of carbon nanotube. Appl. Phys. Lett. 2007, 91, 092121.

[74]

Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871–878.

[75]

Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927.

[76]

Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.

[77]

Garcia, A. G.; Baltazar, S. E.; Castro, A. H. R.; Robles, J. F. P.; Rubio, A. Influence of S and P doping in a graphene sheet. J. Comput. Theor. Nanosci. 2008, 5, 2221–2229.

[78]

Dobrota, A. S.; Pašti, I. A.; Mentus, S. V.; Skorodumova, N. V. A DFT study of the interplay between dopants and oxygen functional groups over the graphene basal plane-implications in energy-related applications. Phys. Chem. Chem. Phys. 2017, 19, 8530–8540.

[79]

Xu, A.; Shi, L.; Zeng, L.; Zhao, T. S. First-principle investigations of nitrogen-, boron-, phosphorus-doped graphite electrodes for vanadium redox flow batteries. Electrochim. Acta 2019, 300, 389–395.

[80]

Yang, Y. J.; Tang, D. M.; Zhang, C.; Zhang, Y. H.; Liang, Q. F.; Chen, S. M.; Weng, Q. H.; Zhou, M.; Xue, Y. M.; Liu, J. W. et al. “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage. Energy Environ. Sci. 2017, 10, 979–986.

[81]

Chen, C.; Huang, Y.; Zhu, Y. D.; Zhang, Z.; Guang, Z. X.; Meng, Z. Y.; Liu, P. B. Nonignorable influence of oxygen in hard carbon for sodium ion storage. ACS Sustainable Chem. Eng. 2020, 8, 1497–1506.

[82]

Guo, X.; Sun, B.; Su, D. W.; Liu, X. X.; Liu, H.; Wang, Y.; Wang, G. X. Recent developments of aprotic lithium-oxygen batteries: Functional materials determine the electrochemical performance. Sci. Bull. 2017, 62, 442–452.

[83]

Zhao, T.; Yao, Y.; Yuan, Y. F.; Wang, M. L.; Wu, F.; Amine, K.; Lu, J. A universal method to fabricating porous carbon for Li–O2 battery. Nano Energy 2021, 82, 105782.

[84]

Sun, Z.; Zhang, Y. C.; Sun, B.; Yang, C. S.; Zhang, T. Micro versus nanochannels: Carbon micro-sieve tubes from biological phloem tissues for lithium-oxygen batteries. Green Chem. 2020, 22, 388–396.

[85]

Wang, M. L.; Yao, Y.; Bi, X. X.; Zhao, T.; Zhang, G. Z.; Wu, F.; Amine, K.; Lu, J. Optimization of oxygen electrode combined with soluble catalyst to enhance the performance of lithium–oxygen battery. Energy Storage Mater. 2020, 28, 73–81.

[86]

Li, S.; Bi, X. X.; Tao, R.; Wang, Q. Z.; Yao, Y.; Wu, F.; Zhang, C. Z. Ultralong cycle life achieved by a natural plant: Miscanthus × giganteus for lithium oxygen batteries. ACS Appl. Mater. Interfaces 2017, 9, 4382–4390.

[87]

Zhang, G. Z.; Yao, Y.; Zhao, T.; Wang, M. L.; Chen, R. J. From black liquor to green energy resource: Positive electrode materials for Li–O2 battery with high capacity and long cycle life. ACS Appl. Mater. Interfaces 2020, 12, 16521–16530.

[88]

Yang, X. H.; He, P.; Xia, Y. Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 2009, 11, 1127–1130.

[89]

Wang, M. L.; Yao, Y.; Tang, Z. W.; Zhao, T.; Wu, F.; Yang, Y. F.; Huang, Q. F. Self-nitrogen-doped carbon from plant waste as an oxygen electrode material with exceptional capacity and cycling stability for lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2018, 10, 32212–32219.

[90]

Wan, W. H.; Zhao, W. W.; Wu, Y. G.; Dai, C. S.; Zhu, X. B.; Wang, Y.; Qin, J.; Chen, T.; Lü, Z. A highly efficient biomass based electrocatalyst for cathodic performance of lithium–oxygen batteries: Yeast derived hydrothermal carbon. Electrochim. Acta 2020, 349, 136411.

[91]

Wan, W. H.; Yu, S.; Wu, Y. G.; Qin, J.; Chen, T.; Wang, Y.; Lü, Z.; Dai, C. S.; Zhu, X. B. Waste biomass derived active carbon as cost-effective and environment-friendly cathode material for lithium–oxygen batteries. J. Electrochem. Soc. 2021, 168, 050542.

[92]

Zhu, X. B.; Yan, Y. Z.; Wan, W. H.; Wang, Y.; Wu, Y. G.; He, X. L.; Lü, Z. Yeast-derived active carbon as sustainable high-performance electrodes for lithium–oxygen batteries. Mater. Lett. 2018, 215, 71–74.

[93]

Jing, S. Y.; Zhang, M. S.; Liang, H. G.; Shen, B. L.; Yin, S. B.; Yang, X. Facile synthesis of 3D binder-free N-doped carbon nanonet derived from silkworm cocoon for Li–O2 battery. J. Mater. Sci. 2018, 53, 4395–4405.

[94]

Luo, J. R.; Yao, X. H.; Yang, L.; Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W. et al. Free-standing porous carbon electrodes derived from wood for high-performance Li–O2 battery applications. Nano Res. 2017, 10, 4318–4326.

[95]

Li, J.; Zhang, Y. N.; Zhou, W.; Nie, H. J.; Zhang, H. M. A hierarchically honeycomb-like carbon via one-step surface and pore adjustment with superior capacity for lithium–oxygen batteries. J. Power Sources 2014, 262, 29–35.

[96]

Zeng, X. Y.; Leng, L. M.; Liu, F. F.; Wang, G. H.; Dong, Y. Y.; Du, L.; Liu, L. N.; Liao, S. J. Enhanced Li–O2 battery performance, using graphene-like nori-derived carbon as the cathode and adding LiI in the electrolyte as a promoter. Electrochim. Acta 2016, 200, 231–238.

[97]

Jo, H. G.; Ahn, H. J. Accelerating the oxygen reduction reaction and oxygen evolution reaction activities of N and P co-doped porous activated carbon for Li–O2 batteries. Catalysts 2020, 10, 1316.

[98]

Kim, H.; Lee, H.; Kim, M.; Bae, Y.; Baek, W.; Park, K.; Park, S.; Kim, T.; Kwon, H.; Choi, W. et al. Flexible free-standing air electrode with bimodal pore architecture for long-cycling Li–O2 batteries. Carbon 2017, 117, 454–461.

[99]

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 2012, 337, 563–566.

[100]

Lee, Y. J.; Kim, D. H.; Kang, T. G.; Ko, Y.; Kang, K.; Lee, Y. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li–O2 batteries. Chem. Mater. 2017, 29, 10542–10550.

[101]

Zhang, Y. T.; Wang, L.; Zhang, X. Z.; Guo, L. M.; Wang, Y.; Peng, Z. Q. High-capacity and high-rate discharging of a coenzyme Q10-catalyzed Li–O2 battery. Adv. Mater. 2018, 30, 1705571.

[102]

Song, H. Y.; Xu, S. M.; Li, Y. J.; Dai, J. Q.; Gong, A.; Zhu, M. W.; Zhu, C. L.; Chen, C. J.; Chen, Y. N.; Yao, Y. G. et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1701203.

[103]

Chen, C. J.; Xu, S. M.; Kuang, Y. D.; Gan, W. T.; Song, J. W.; Chen, G. G.; Pastel, G.; Liu, B. Y.; Li, Y. J.; Huang, H. et al. Nature-inspired tri-pathway design enabling high-performance flexible Li–O2 batteries. Adv. Energy Mater. 2019, 9, 1802964.

[104]

Tong, S. F.; Zheng, M. B.; Lu, Y.; Lin, Z. X.; Zhang, X. P.; He, P.; Zhou, H. S. Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li–O2 batteries. Chem. Commun. 2015, 51, 7302–7304.

[105]

Shu, C. Z.; Wu, C.; Long, J. P.; Guo, H. P.; Dou, S. X.; Wang, J. Z. Highly reversible Li–O2 battery induced by modulating local electronic structure via synergistic interfacial interaction between ruthenium nanoparticles and hierarchically porous carbon. Nano Energy 2019, 57, 166–175.

[106]

Harding, J. R.; Lu, Y. C.; Tsukada, Y.; Shao-Horn, Y. Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications. Phys. Chem. Chem. Phys. 2012, 14, 10540–10546.

[107]

Shen, J. R.; Wu, H. T.; Sun, W.; Qiao, J. S.; Cai, H. Q.; Wang, Z. H.; Sun, K. N. In- situ nitrogen-doped hierarchical porous hollow carbon spheres anchored with iridium nanoparticles as efficient cathode catalysts for reversible lithium-oxygen batteries. Chem. Eng. J. 2019, 358, 340–350.

[108]

Yao, Y.; Wu, F. Turning waste chemicals into wealth-A new approach to synthesize efficient cathode material for an Li–O2 battery. ACS Appl. Mater. Interfaces 2017, 9, 31907–31912.

[109]

Guo, Z. Y.; Zhou, D. D.; Liu, H. J.; Dong, X. L.; Yuan, S. Y.; Yu, A. S.; Wang, Y. G.; Xia, Y. Y. Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery. J. Power Sources 2015, 276, 181–188.

[110]

Li, J.; Huang, L. L.; Duan, D. C.; Li, X. H.; Song, H. Y.; Liao, S. J. Biogelatin-derived and N, S-codoped 3D network carbon materials anchored with RuO2 as an efficient cathode for rechargeable Li–O2 batteries. J. Phys. Chem. C 2021, 125, 21914–21921.

[111]

Zhu, X. D.; Shang, Y.; Lu, Y. C.; Liu, C. M.; Li, Z. J.; Liu, Q. C. A free-standing biomass-derived RuO2/N-doped porous carbon cathode towards highly performance lithium–oxygen batteries. J. Power Sources 2020, 471, 228444.

[112]

Jo, H. G.; Kim, K. H.; Ahn, H. J. Well-dispersed Pt/RuO2-decorated mesoporous N-doped carbon as a hybrid electrocatalyst for Li–O2 batteries. RSC Adv. 2021, 11, 12209–12217.

[113]

Li, D. R.; Wang, Q. Z.; Yao, Y.; Wu, F.; Yu, Y. J.; Zhang, C. Z. New application of waste citrus maxima peel-derived carbon as an oxygen electrode material for lithium oxygen batteries. ACS Appl. Mater. Interfaces 2018, 10, 32058–32066.

[114]

Shen, J. R.; Wu, H. T.; Sun, W.; Wu, Q. B.; Zhen, S. Y.; Wang, Z. H.; Sun, K. N. Biomass-derived hierarchically porous carbon skeletons with in situ decorated IrCo nanoparticles as high-performance cathode catalysts for Li–O2 batteries. J. Mater. Chem. A 2019, 7, 10662–10671.

[115]

Kim, H. J.; Jung, S. C.; Han, Y. K.; Oh, S. H. An atomic-level strategy for the design of a low overpotential catalyst for Li–O2 batteries. Nano Energy 2015, 13, 679–686.

[116]

Xia, H.; Xie, Q. F.; Tian, Y. H.; Chen, Q.; Wen, M.; Zhang, J. L.; Wang, Y.; Tang, Y. P.; Zhang, S. Q. High-efficient CoPt/activated functional carbon catalyst for Li–O2 batteries. Nano Energy 2021, 84, 105877.

[117]

Jing, S. Y.; Zhang, Y. L.; Chen, F.; Liang, H. G.; Yin, S. B.; Tsiakaras, P. Novel and highly efficient cathodes for Li–O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites. Appl. Catal. B: Environ. 2019, 245, 721–732.

[118]

Esteki, S.; Ahmadian, F. Electronic structure and half-metallicity in new Heusler alloys CoYO2 (Y= Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn). J. Magn. Magn. Mater. 2017, 438, 12–19.

[119]

Liang, H. G.; Chen, F.; Zhang, M. S.; Jing, S. Y.; Shen, B. L.; Yin, S. B.; Tsiakaras, P. Highly performing free standing cathodic electrocatalysts for Li–O2 batteries: CoNiO2 nanoneedle arrays supported on N-doped carbon nanonet. Appl. Catal. A: Gen. 2019, 574, 114–121.

[120]

Zhu, Y. L.; Zong, Q.; Zhang, Q. L.; Yang, H.; Wang, Q. Q.; Wang, H. Y. Three-dimensional core-shell NiCoP@NiCoP array on carbon cloth for high performance flexible asymmetric supercapacitor. Electrochim. Acta 2019, 299, 441–450.

[121]

Wang, X.; Ma, Z. J.; Chai, L. L.; Xu, L. Q.; Zhu, Z. Y.; Hu, Y.; Qian, J. J.; Huang, S. M. MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon 2019, 141, 643–651.

[122]

Liang, H. G.; Gong, X.; Jia, L. H.; Chen, F.; Rao, Z. H.; Jing, S. Y.; Tsiakaras, P. Highly efficient Li–O2 batteries based on self-standing NiFeP@ NC/BC cathode derived from biochar supported Prussian blue analogues. J. Electroanal. Chem. 2020, 867, 114124.

[123]

Sun, K. L.; Li, J.; Huang, L. L.; Ji, S.; Kannan, P.; Li, D.; Liu, L. N.; Liao, S. J. Biomass-derived 3D hierarchical N-doped porous carbon anchoring cobalt-iron phosphide nanodots as bifunctional electrocatalysts for LiO2 batteries. J. Power Sources 2019, 412, 433–441.

Nano Research Energy
Cite this article:
Liu G, Qin S, Zhang X, et al. A new opportunity for biomass-derived carbon in highly stable Li-O2 battery: A review. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2022.9120142

276

Views

71

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 23 September 2024
Revised: 21 October 2024
Accepted: 03 November 2024
Published: 18 November 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return