PDF (1.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (1)

Highlight | Open Access

Cryogenic electrolytes and catalysts for zinc air batteries

Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126 Chemnitz, Germany
Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
Show Author Information

Abstract

The challenges of enabling zinc air batteries to operate at ultralow temperatures are twofold. The Prerequisite is preventing the electrolyte from freezing while maintaining high ionic conductivity. Secondly, the catalyst has to work efficiently at low temperatures. This highlight presents the latest development to resolve the challenges by tuning the structures of the electrolyte and catalyst, offering a new paradigm to widen the working temperature range of zinc air batteries.

References

[1]

Chen, S. M.; Ma, L. T.; Wu, S. L.; Wang, S. Y.; Li, Z. B.; Emmanuel, A. A.; Huqe, R.; Zhi, C. Y.; Zapien, J. A. Uniform virus-like Co-N-Cs electrocatalyst derived from prussian blue analog for stretchable fiber-shaped Zn-air batteries. Adv. Funct. Mater. 2020, 30, 1908945.

[2]

Shinde, S. S.; Jung, J. Y.; Wagh, N. K.; Lee, C. H.; Kim, D. H.; Kim, S. H.; Lee, S. U.; Lee, J. H. Ampere-hour-scale zinc-air pouch cells. Nat. Energy 2021, 6, 592–604.

[3]

Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108.

[4]

Chen, F.; Zhou, D.; Wang, J. H.; Li, T. Z.; Zhou, X. H.; Gan, T. S.; Handschuh-Wang, S.; Zhou, X. C. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew. Chem., Int. Ed. 2018, 57, 6568–6571.

[5]

Pei, Z. X.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Fei, J. Y.; Wei, L.; Chen, J. S.; Wang, C.; Qi, R. J.; Liu, Z. W. et al. A flexible rechargeable zinc-air battery with excellent low-temperature adaptability. Angew. Chem., Int. Ed. 2020, 59, 4793–4799.

[6]

Nian, Q. S.; Wang, J. Y.; Liu, S.; Sun, T. J.; Zheng, S. B.; Zhang, Y.; Tao, Z. L.; Chen, J. Aqueous batteries operated at −50 ℃. Angew. Chem., Int. Ed. 2019, 58, 16994–16999.

[7]

Zhu, M. S.; Wang, X. J.; Tang, H. M.; Wang, J. W.; Hao, Q.; Liu, L. X.; Li, Y.; Zhang, K.; Schmidt, O. G. Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 2020, 30, 1907218.

[8]

Zhao, C. X.; Liu, J. N.; Yao, N.; Wang, J.; Ren, D.; Chen, X.; Li, B. Q.; Zhang, Q. Can aqueous zinc-air batteries work at sub-zero temperatures? Angew. Chem., Int. Ed. 2021, 60, 15281–15285.

[9]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[10]

Chen, S. M.; Wang, T. R.; Ma, L. T.; Zhou, B. B.; Wu, J. H.; Zhu, D. M.; Li, Y. Y.; Fan, J.; Zhi, C. Y. Aqueous rechargeable zinc air batteries operated at −110 ℃. Chem 2022, doi: 10.1016/j.chempr.2022.10.028.

Nano Research Energy
Article number: e9120038
Cite this article:
Zhu M. Cryogenic electrolytes and catalysts for zinc air batteries. Nano Research Energy, 2023, 2: e9120038. https://doi.org/10.26599/NRE.2023.9120038
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return