AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction

Qiqi Zhang1,2Tianyu Xia3( )He Huang4Jialong Liu5( )Mengyuan Zhu4Hao Yu4Weifeng Xu4Yuping Huo1,2Congli He1Shipeng Shen1Cong Lu6Rongming Wang7Shouguo Wang1,4,7,8( )
Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Key Laboratory of Materials Physics of the Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
Synchrotron Radiation Research Center, Hyogo Science and Technology Association, Tatsuno 6795165, Japan
Institute for Multidisciplinary Innovation, University of Science and Technology Beijing, Beijing 100083, China
School of Materials Science and Engineering, Anhui University, Hefei 230601, China
Show Author Information

Graphical Abstract

Abstract

Morphology engineering has been developed as one of the most widely used strategies for improving the performance of electrocatalysts. However, the harsh reaction conditions and cumbersome reaction steps during the nanomaterials synthesis still limit their industrial applications. Herein, one-dimensional (1D) novel-segmented PtTe porous nanochains (PNCs) were successfully synthesized by the template methods assisted by Pt autocatalytic reduction. The PtTe PNCs consist of consecutive mesoporous architectures that provide a large electrochemical surface area (ECSA) and abundant active sites to enhance methanol oxidation reaction (MOR). Furthermore, 1D nanostructure as a robust sustaining frame can maintain a high mass/charge transfer rate in a long-term durability test. After 2,000 cyclic voltammetry (CV) cycles, the ECSA value of PtTe PNCs remained as high as 44.47 m2·gPt–1, which was much larger than that of commercial Pt/C (3.95 m2·gPt–1). The high catalytic activity and durability of PtTe PNCs are also supported by CO stripping test and density functional theory calculation. This autocatalytic reduction-assisted synthesis provides new insights for designing efficient low-dimensional nanocatalysts.

Electronic Supplementary Material

Download File(s)
nre-2-1-9120041_ESM.pdf (2.3 MB)

References

[1]

Verhelst, S.; Turner, J. W. G.; Sileghem, L.; Vancoillie, J. Methanol as a fuel for internal combustion engines. Prog. Energy Combust. Sci. 2019, 70, 43–88.

[2]

Hu, G. F.; Shang, L.; Sheng, T.; Chen, Y. G.; Wang, L. Y. PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 2020, 30, 2002281.

[3]

Lou, W. H.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 2022, 15, 18–37.

[4]

Chen, S.; Huang, D. M.; Liu, D. Y.; Sun, H. Z.; Yan, W. J.; Wang, J. C.; Dong, M.; Tong, X. L.; Fan, W. B. Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Appl. Catal. B Environ. 2021, 291, 120065.

[5]

Bai, G. L.; Liu, C.; Gao, Z.; Lu, B. Y.; Tong, X. L.; Guo, X. Y.; Yang, N. J. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation. Small 2019, 15, 1902951.

[6]

Yang, X. B.; Wang, Q.; Qing, S. J.; Gao, Z.; Tong, X. L.; Yang, N. J. Modulating electronic structure of an Au-nanorod-core-PdPt-alloy-shell catalyst for efficient alcohol electro-oxidation. Adv. Energy Mater. 2021, 11, 2100812.

[7]

Xia, T. Y.; Zhao, K.; Zhu, Y. Q.; Bai, X. Y.; Gao, H.; Wang, Z. Y.; Gong, Y.; Feng, M. L.; Li, S. F.; Zheng, Q. et al. Mixed-dimensional Pt-Ni alloy polyhedral nanochains as bifunctional electrocatalysts for direct methanol fuel cell. Adv. Mater., in press, DOI: 10.1002/adma.202206508.

[8]

Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058–2068.

[9]

Cao, Y. Q.; Yang, Y.; Shan, Y. F.; Huang, Z. R. One-pot and facile fabrication of hierarchical branched Pt-Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 5998–6003.

[10]

Lu, W. Y.; Xia, X. Y.; Wei, X. X.; Li, M. M.; Zeng, M.; Guo, J.; Cheng, S. Nanoengineering 2D dendritic PdAgPt nanoalloys with edge-enriched active sites for enhanced alcohol electroxidation and electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 21569–21578.

[11]

Li, Z. J.; Jiang, X.; Wang, X. R.; Hu, J. R.; Liu, Y. Y.; Fu, G. T.; Tang, Y. W. Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B Environ. 2020, 277, 119135.

[12]

Zhang, Q. Q.; Liu, J. L.; Xia, T. Y.; Qi, J.; Lyu, H. C.; Luo, B. Y.; Wang, R. M.; Guo, Y. Z.; Wang, L. H.; Wang, S. G. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells. Nano Res. 2019, 12, 2520–2527.

[13]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[14]

Yaldagard, M.; Nazoktabar, M.; Jahanshahi, M. Fabrication of platinum/polypyrol-carbon nanofiber nanocomposite electrocatalyst for direct methanol fuel cells. J. Nano Res. 2021, 70, 101–117.

[15]

Pham, H. Q.; Huynh, T. T.; Nguyen, S. T.; Dang, N. N.; Bach, L. G.; Ho, V. T. T. Superior CO-tolerance and stability toward alcohol electro-oxidation reaction of 1D-bimetallic platinum-cobalt nanowires on Tungsten-modified anatase TiO2 nanostructure. Fuel 2020, 276, 118078.

[16]

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Yang, Y.; Luo, M. C.; Huang, Y. R.; Sun, Y. J.; Chao, Y. G.; Yang, W. X.; Yang, W. W. et al. Lavender-like Ga-doped Pt3Co nanowires for highly stable and active electrocatalysis. ACS Catal. 2020, 10, 3018–3026.

[17]

Li, H. Y.; Wu, X. S.; Tao, X. L.; Lu, Y.; Wang, Y. W. Direct synthesis of ultrathin Pt nanowire arrays as catalysts for methanol oxidation. Small 2020, 16, 2001135.

[18]

Liang, M. C.; Xia, T. Y.; Gao, H.; Zhao, K.; Cao, T. Q.; Deng, M.; Ren, X. Y.; Li, S. F.; Guo, H. Z.; Wang, R. M. Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC. Nano Res. 2022, 15, 1221–1229.

[19]

Liang, W. K.; Wang, Y. W.; Zhao, L.; Guo, W.; Li, D.; Qin, W.; Wu, H. H.; Sun, Y. H.; Jiang, L. 3D Anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 2021, 33, 2100713.

[20]

Geng, W. C.; Zhang, Y. J.; Yu, L.; Li, J. J.; Sang, J. L.; Li, Y. J. Integrating Pt16Te nanotroughs and nanopillars into a 3D "Self-Supported" hierarchical nanostructure for boosting methanol electrooxidation. Small 2021, 17, 2101499.

[21]

Sha, R.; Jones, S. S.; Badhulika, S. Controlled synthesis of platinum nanoflowers supported on carbon quantum dots as a highly effective catalyst for methanol electro-oxidation. Surf. Coat. Technol. 2019, 360, 400–408.

[22]

Liu, J. L.; Xia, T. Y.; Wang, S. G.; Yang, G.; Dong, B. W.; Wang, C.; Ma, Q. D.; Sun, Y. N.; Wang, R. M. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale 2016, 8, 11432–11440.

[23]

Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.

[24]

Tang, J. X.; Chen, Q. S.; You, L. X.; Liao, H. G.; Sun, S. G.; Zhou, S. G.; Xu, Z. N.; Chen, Y. M.; Guo, G. C. Screw-like PdPt nanowires as highly efficient electrocatalysts for methanol and ethylene glycol oxidation. J. Mater. Chem. A 2018, 6, 2327–2336.

[25]

Ciacchi, L. C.; Pompe, W.; De Vita, A. Growth of platinum clusters via addition of Pt(Ⅱ) complexes: A first principles investigation. J. Phys. Chem. B 2003, 107, 1755–1764.

[26]

Ciacchi, L. C.; Pompe, W.; De Vita, A. Initial nucleation of platinum clusters after reduction of K2PtCl4 in aqueous solution: A first principles study. J. Am. Chem. Soc. 2001, 123, 7371–7380.

[27]

Lim, B.; Lu, X. M.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. N. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.

[28]

Song, Y. J.; Yang, Y.; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H. F.; Jiang, Y. B.; Brinker, C. J.; Van Swol, F.; Shelnutt, J. A. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 2004, 126, 635–645.

[29]

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

[30]

Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

[31]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[32]

Huang, H.; Wu, H. H.; Chi, C.; Huang, B. L.; Zhang, T. Y. Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 8897–8904.

[33]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[34]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[35]

Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 127, 3868–3872.

[36]
Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Physical Electronics Division: Gaithersburg, 1979.
[37]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, e9120017.

[38]

Liang, H. W.; Liu, S.; Gong, J. Y.; Wang, S. B.; Wang, L.; Yu, S. H. Ultrathin Te nanowires: An excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv. Mater. 2009, 21, 1850–1854.

[39]

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

[40]

Wang, H. J.; Yin, S. L.; Li, C. J.; Deng, K.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Xue, H. R.; Wang, L. Direct synthesis of superlong Pt|Te mesoporous nanotubes for electrocatalytic oxygen reduction. J. Mater. Chem. A 2019, 7, 1711–1717.

[41]

Li, H. H.; Xie, M. L.; Cui, C. H.; He, D.; Gong, M.; Jiang, J.; Zheng, Y. R.; Chen, G.; Lei, Y.; Yu, S. H. Surface charge polarization at the interface: Enhancing the oxygen reduction via precise synthesis of heterogeneous ultrathin Pt/PtTe nanowire. Chem. Mater. 2016, 28, 8890–8898.

[42]

Wang, H. J.; Wang, L.; Sato, T.; Sakamoto, Y.; Tominaka, S.; Miyasaka, K.; Miyamoto, N.; Nemoto, Y.; Terasaki, O.; Yamauchi, Y. Synthesis of mesoporous Pt films with tunable pore sizes from aqueous surfactant solutions. Chem. Mater. 2012, 24, 1591–1598.

[43]

Xiao, L. P.; Li, G.; Yang, Z.; Chen, K.; Zhou, R. S.; Liao, H. G.; Xu, Q. C.; Xu, J. Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100982.

[44]

Jiang, B.; Li, C. L.; Imura, M.; Tang, J.; Yamauchi, Y. Multimetallic mesoporous spheres through surfactant-directed synthesis. Adv. Sci. 2015, 2, 1500112.

[45]

Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed. 2013, 52, 7472–7476.

[46]

Pandoli, O. G.; Neto, R. J. G.; Oliveira, N. R.; Fingolo, A. C.; Corrêa, C. C.; Ghavami, K.; Strauss, M.; Santhiago, M. Ultra-highly conductive hollow channels guided by a bamboo bio-template for electric and electrochemical devices. J. Mater. Chem. A 2020, 8, 4030–4039.

Nano Research Energy
Article number: e9120041
Cite this article:
Zhang Q, Xia T, Huang H, et al. Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction. Nano Research Energy, 2023, 2: e9120041. https://doi.org/10.26599/NRE.2023.9120041

5824

Views

490

Downloads

22

Crossref

18

Scopus

Altmetrics

Received: 08 August 2022
Revised: 20 October 2022
Accepted: 21 October 2022
Published: 28 November 2022
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return