Graphical Abstract

Achieving high loading of active sulfur yet rational regulating the shuttle effect of lithium polysulfide (LiPS) is of great significance in pursuit of high-performance lithium-sulfur (Li-S) battery. Herein, we develop a free-standing graphene-nitrogen (N), phosphorus (P) and fluorine (F) co-doped mesoporous carbon-sulfur (G-NPFMC-S) film, which was used as a binder-free cathode in Li-S battery. The developed mesoporous carbon (MC) achieved a high specific surface area of 921 m2·g–1 with a uniform pore size distribution of 15 nm. The inserted graphene network inside G-NPFMC-S cathode can effectively improve its electrical conductivity and simultaneously restrict the shuttle of LiPS. A high sulfur loading of 86% was achieved due to the excellent porous structures of graphene-NPFMC (G-NPFMC) composite. When implemented as a freestanding cathode in Li-S battery, this G-NPFMC-S achieved a high specific capacity (1,356 mAh·g–1), favorable rate capability, and long-term cycling stability up to 500 cycles with a minimum capacity fading rate of 0.025% per cycle, outperforming the corresponding performances of NPFMC-sulfur (NPFMC-S) and MC-sulfur (MC-S). These promising results can be ascribed to the featured structures that formed inside G-NPFMC-S film, as that highly porous NPFMC can provide sufficient storage space for the loading of sulfur, while, the N, P, F-doped carbonic interface and the inserted graphene network help hinder the shuttle of LiPS via chemical adsorption and physical barrier effect. This proposed unique structure can provide a bright prospect in that high mass loading of active sulfur and restriction the shuttle of LiPS can be simultaneously achieved for Li-S battery.
Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.
Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.
Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.
Zhao, S. Q.; He, Y. J.; Wang, Z. W.; Bo, X. X.; Hao, S. M.; Yuan, Y. F.; Jin, H. L.; Wang, S.; Lin, Z. Q. Advancing performance and unfolding mechanism of lithium and sodium storage in SnO2 via precision synthesis of monodisperse PEG-ligated nanoparticles. Adv. Energy Mater. 2022, 12, 2201015.
Zhao, S. Q.; Sewell, C. D.; Liu, R. P.; Jia, S. R.; Wang, Z. W.; He, Y. J.; Yuan, K. J.; Jin, H. L.; Wang, S.; Liu, X. Q. et al. SnO2 as advanced anode of alkali-ion batteries: Inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility. Adv. Energy Mater. 2020, 10, 1902657.
Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.
Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 2022, 1, e9120012.
Zhou, G. M.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319.
Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.
Mao, Y. Y.; Li, G. R.; Guo, Y.; Li, Z. P.; Liang, C. D.; Peng, X. S.; Lin, Z. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14628.
Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.
Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M. J. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat. Commun. 2015, 6, 7278.
Li, G. R.; Lu, F.; Dou, X. Y.; Wang, X.; Luo, D.; Sun, H.; Yu, A. P.; Chen, Z. W. Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries. J. Am. Chem. Soc. 2020, 142, 3583–3592.
Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.
Duan, H. Y.; Li, K.; Xie, M.; Chen, J. M.; Zhou, H. G.; Wu, X. F.; Ning, G. H.; Cooper, A. I.; Li, D. Scalable synthesis of ultrathin polyimide covalent organic framework nanosheets for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19446–19453.
Zhong, Y.; Chao, D. L.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, Y. D.; Wang, X. L.; Xia, X. H.; Tu, J. P. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1706391.
Li, G. R.; Lei, W.; Luo, D.; Deng, Y. P.; Deng, Z. P.; Wang, D. L.; Yu, A. P.; Chen, Z. W. Stringed "tube on cube" nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium-sulfur batteries. Energy Environ. Sci. 2018, 11, 2372–2381.
Wang, J. L.; Han, W. Q. A review of heteroatom doped materials for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2107166.
Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283–3291.
Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.
Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 3591–3595.
Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.
Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.
Hu, Y.; Chen, W.; Lei, T. Y.; Jiao, Y.; Huang, J. W.; Hu, A. J.; Gong, C. H.; Yan, C. Y.; Wang, X. F.; Xiong, J. Strategies toward high-loading lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 2000082.
Wang, T.; Zhang, Q. S.; Zhong, J.; Chen, M. X.; Deng, H. L.; Cao, J. H.; Wang, L.; Peng, L. L.; Zhu, J.; Lu, B. G. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv. Energy Mater. 2021, 11, 2100448.
Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.
Yan, Y.; Zhang, P.; Qu, Z. H.; Tong, M. M.; Zhao, S.; Li, Z. W.; Liu, M. K.; Lin, Z. Q. Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery. Nano Lett. 2020, 20, 7662–7669.
Liu, Y. Q.; Yan, Y.; Li, K.; Yu, Y.; Wang, Q. H.; Liu, M. K. A high-areal-capacity lithium-sulfur cathode achieved by a boron-doped carbon-sulfur aerogel with consecutive core-shell structures. Chem. Commun. 2019, 55, 1084–1087.
Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.
Zheng, Y.; Ni, X. P.; Li, K. M.; Yu, X. H.; Song, H.; Chen, S.; Khan, N. A.; Wang, D.; Zhang, C. Multi-heteroatom-doped hollow carbon nanocages from ZIF-8@CTP nanocomposites as high-performance anodes for sodium-ion batteries. Compos. Commun. 2022, 32, 101116.
Liu, Y.; Li, Q. Y.; Guo, X.; Kong, X. D.; Ke, J. W.; Chi, M. F.; Li, Q. X.; Geng, Z. G.; Zeng, J. A highly efficient metal-free electrocatalyst of f-doped porous carbon toward N2 electroreduction. Adv. Mater. 2020, 32, 1907690.
Huang, S. Z.; Li, Y.; Feng, Y. Y.; An, H. R.; Long, P.; Qin, C. Q.; Feng, W. Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 23095–23105.
Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.
Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.
Xue, W. D.; Zhou, Q. X.; Cui, X.; Jia, S. R.; Zhang, J. W.; Lin, Z. Q. Metal-organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Nano Energy 2021, 86, 106073.
Zhang, J. W.; Sewell, C. D.; Huang, H. W.; Lin, Z. Q. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization. Adv. Energy Mater. 2021, 11, 2102767.
Cui, X.; Gao, L. K.; Lei, S.; Liang, S.; Zhang, J. W.; Sewell, C. D.; Xue, W. D.; Liu, Q.; Lin, Z. Q.; Yang, Y. K. Simultaneously crafting single-atomic fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2021, 31, 2009197.
Ma, D. T.; Li, Y. L.; Mi, H. W.; Luo, S.; Zhang, P. X.; Lin, Z. Q.; Li, J. Q.; Zhang, H. Robust SnO2–x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 8901–8905.
Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.
Xie, F. R.; Zhao, S. Q.; Bo, X. X.; Li, G. H.; Fei, J. M.; Ahmed, E. A. M. A.; Zhang, Q. C.; Jin, H. L.; Wang, S.; Lin, Z. Q. A robust solvothermal-driven solid-to-solid transition route from micron SnC2O4 to tartaric acid-capped nano-SnO2 anchored on graphene for superior lithium and sodium storage. J. Mater. Chem. A, in press, DOI: 10.1039/D2TA07435D.
Zhao, S. Q.; Wang, Z. W.; He, Y. J.; Jiang, H. R.; Harn, Y. W.; Liu, X. Q.; Su, C. L.; Jin, H. L.; Li, Y.; Wang, S. et al. A robust route to Co2(OH)2CO3 ultrathin nanosheets with superior lithium storage capability templated by aspartic acid-functionalized graphene oxide. Adv. Energy Mater. 2019, 9, 1901093.
Dörfler, S.; Strubel, P.; Jaumann, T.; Troschke, E.; Hippauf, F.; Kensy, C.; Schökel, A.; Althues, H.; Giebeler, L.; Oswald, S. et al. On the mechanistic role of nitrogen-doped carbon cathodes in lithium-sulfur batteries with low electrolyte weight portion. Nano Energy 2018, 54, 116–128.
Li, M.; Zhang, Y. N.; Bai, Z. Y.; Liu, W. W.; Liu, T. C.; Gim, J.; Jiang, G. P.; Yuan, Y. F.; Luo, D.; Feng, K. et al. A lithium-sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio. Adv. Mater. 2018, 30, 1804271.
Tan, J. C.; Li, D.; Liu, Y. Q.; Zhang, P.; Qu, Z. H.; Yan, Y.; Hu, H.; Cheng, H. Y.; Zhang, J. X.; Dong, M. Y. et al. A self-supported 3D aerogel network lithium-sulfur battery cathode: Sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. J. Mater. Chem. A 2020, 8, 7980–7990.
Zhao, S.; Kang, Y. J.; Liu, M. J.; Wen, B. H.; Fang, Q.; Tang, Y. Y.; He, S. C.; Ma, X.; Liu, M. K.; Yan, Y. Modulating the electronic structure of nanomaterials to enhance polysulfides confinement for advanced lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 18927–18946.
Zhang, Q.; Huang, Q. H.; Hao, S. M.; Deng, S. Y.; He, Q. M.; Lin, Z. Q.; Yang, Y. K. Polymers in lithium-sulfur batteries. Adv. Sci. 2022, 9, 2103798.
Li, Z. L.; Xiao, Z. B.; Wang, S. Q.; Cheng, Z. B.; Li, P. Y.; Wang, R. H. Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1902322.