AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery

Haotian Liu1,2Fan Liu1Zehua Qu3Jieling Chen1Hui Liu1Yiqing Tan1Jiabao Guo1Yan Yan1,3( )Shuang Zhao1Xinsheng Zhao4Xinming Nie4( )Xin Ma5( )Zengxia Pei6Mingkai Liu1,3( )
School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
Show Author Information

Graphical Abstract

Abstract

Achieving high loading of active sulfur yet rational regulating the shuttle effect of lithium polysulfide (LiPS) is of great significance in pursuit of high-performance lithium-sulfur (Li-S) battery. Herein, we develop a free-standing graphene-nitrogen (N), phosphorus (P) and fluorine (F) co-doped mesoporous carbon-sulfur (G-NPFMC-S) film, which was used as a binder-free cathode in Li-S battery. The developed mesoporous carbon (MC) achieved a high specific surface area of 921 m2·g–1 with a uniform pore size distribution of 15 nm. The inserted graphene network inside G-NPFMC-S cathode can effectively improve its electrical conductivity and simultaneously restrict the shuttle of LiPS. A high sulfur loading of 86% was achieved due to the excellent porous structures of graphene-NPFMC (G-NPFMC) composite. When implemented as a freestanding cathode in Li-S battery, this G-NPFMC-S achieved a high specific capacity (1,356 mAh·g–1), favorable rate capability, and long-term cycling stability up to 500 cycles with a minimum capacity fading rate of 0.025% per cycle, outperforming the corresponding performances of NPFMC-sulfur (NPFMC-S) and MC-sulfur (MC-S). These promising results can be ascribed to the featured structures that formed inside G-NPFMC-S film, as that highly porous NPFMC can provide sufficient storage space for the loading of sulfur, while, the N, P, F-doped carbonic interface and the inserted graphene network help hinder the shuttle of LiPS via chemical adsorption and physical barrier effect. This proposed unique structure can provide a bright prospect in that high mass loading of active sulfur and restriction the shuttle of LiPS can be simultaneously achieved for Li-S battery.

Electronic Supplementary Material

Download File(s)
nre-2-1-9120049_ESM.pdf (1.8 MB)

References

[1]

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

[2]

Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.

[3]

Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.

[4]

Zhao, S. Q.; He, Y. J.; Wang, Z. W.; Bo, X. X.; Hao, S. M.; Yuan, Y. F.; Jin, H. L.; Wang, S.; Lin, Z. Q. Advancing performance and unfolding mechanism of lithium and sodium storage in SnO2 via precision synthesis of monodisperse PEG-ligated nanoparticles. Adv. Energy Mater. 2022, 12, 2201015.

[5]

Zhao, S. Q.; Sewell, C. D.; Liu, R. P.; Jia, S. R.; Wang, Z. W.; He, Y. J.; Yuan, K. J.; Jin, H. L.; Wang, S.; Liu, X. Q. et al. SnO2 as advanced anode of alkali-ion batteries: Inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility. Adv. Energy Mater. 2020, 10, 1902657.

[6]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[7]

Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 2022, 1, e9120012.

[8]

Zhou, G. M.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319.

[9]

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

[10]

Mao, Y. Y.; Li, G. R.; Guo, Y.; Li, Z. P.; Liang, C. D.; Peng, X. S.; Lin, Z. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14628.

[11]

Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.

[12]

Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M. J. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat. Commun. 2015, 6, 7278.

[13]

Li, G. R.; Lu, F.; Dou, X. Y.; Wang, X.; Luo, D.; Sun, H.; Yu, A. P.; Chen, Z. W. Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries. J. Am. Chem. Soc. 2020, 142, 3583–3592.

[14]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

[15]

Duan, H. Y.; Li, K.; Xie, M.; Chen, J. M.; Zhou, H. G.; Wu, X. F.; Ning, G. H.; Cooper, A. I.; Li, D. Scalable synthesis of ultrathin polyimide covalent organic framework nanosheets for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19446–19453.

[16]

Zhong, Y.; Chao, D. L.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, Y. D.; Wang, X. L.; Xia, X. H.; Tu, J. P. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1706391.

[17]

Li, G. R.; Lei, W.; Luo, D.; Deng, Y. P.; Deng, Z. P.; Wang, D. L.; Yu, A. P.; Chen, Z. W. Stringed "tube on cube" nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium-sulfur batteries. Energy Environ. Sci. 2018, 11, 2372–2381.

[18]

Wang, J. L.; Han, W. Q. A review of heteroatom doped materials for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2107166.

[19]

Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283–3291.

[20]

Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.

[21]

Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 3591–3595.

[22]

Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.

[23]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[24]

Hu, Y.; Chen, W.; Lei, T. Y.; Jiao, Y.; Huang, J. W.; Hu, A. J.; Gong, C. H.; Yan, C. Y.; Wang, X. F.; Xiong, J. Strategies toward high-loading lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 2000082.

[25]

Wang, T.; Zhang, Q. S.; Zhong, J.; Chen, M. X.; Deng, H. L.; Cao, J. H.; Wang, L.; Peng, L. L.; Zhu, J.; Lu, B. G. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv. Energy Mater. 2021, 11, 2100448.

[26]

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

[27]

Yan, Y.; Zhang, P.; Qu, Z. H.; Tong, M. M.; Zhao, S.; Li, Z. W.; Liu, M. K.; Lin, Z. Q. Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery. Nano Lett. 2020, 20, 7662–7669.

[28]

Liu, Y. Q.; Yan, Y.; Li, K.; Yu, Y.; Wang, Q. H.; Liu, M. K. A high-areal-capacity lithium-sulfur cathode achieved by a boron-doped carbon-sulfur aerogel with consecutive core-shell structures. Chem. Commun. 2019, 55, 1084–1087.

[29]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

[30]

Zheng, Y.; Ni, X. P.; Li, K. M.; Yu, X. H.; Song, H.; Chen, S.; Khan, N. A.; Wang, D.; Zhang, C. Multi-heteroatom-doped hollow carbon nanocages from ZIF-8@CTP nanocomposites as high-performance anodes for sodium-ion batteries. Compos. Commun. 2022, 32, 101116.

[31]

Liu, Y.; Li, Q. Y.; Guo, X.; Kong, X. D.; Ke, J. W.; Chi, M. F.; Li, Q. X.; Geng, Z. G.; Zeng, J. A highly efficient metal-free electrocatalyst of f-doped porous carbon toward N2 electroreduction. Adv. Mater. 2020, 32, 1907690.

[32]

Huang, S. Z.; Li, Y.; Feng, Y. Y.; An, H. R.; Long, P.; Qin, C. Q.; Feng, W. Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 23095–23105.

[33]

Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

[34]

Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.

[35]

Xue, W. D.; Zhou, Q. X.; Cui, X.; Jia, S. R.; Zhang, J. W.; Lin, Z. Q. Metal-organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Nano Energy 2021, 86, 106073.

[36]

Zhang, J. W.; Sewell, C. D.; Huang, H. W.; Lin, Z. Q. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization. Adv. Energy Mater. 2021, 11, 2102767.

[37]

Cui, X.; Gao, L. K.; Lei, S.; Liang, S.; Zhang, J. W.; Sewell, C. D.; Xue, W. D.; Liu, Q.; Lin, Z. Q.; Yang, Y. K. Simultaneously crafting single-atomic fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2021, 31, 2009197.

[38]

Ma, D. T.; Li, Y. L.; Mi, H. W.; Luo, S.; Zhang, P. X.; Lin, Z. Q.; Li, J. Q.; Zhang, H. Robust SnO2–x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 8901–8905.

[39]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[40]

Xie, F. R.; Zhao, S. Q.; Bo, X. X.; Li, G. H.; Fei, J. M.; Ahmed, E. A. M. A.; Zhang, Q. C.; Jin, H. L.; Wang, S.; Lin, Z. Q. A robust solvothermal-driven solid-to-solid transition route from micron SnC2O4 to tartaric acid-capped nano-SnO2 anchored on graphene for superior lithium and sodium storage. J. Mater. Chem. A, in press, DOI: 10.1039/D2TA07435D.

[41]

Zhao, S. Q.; Wang, Z. W.; He, Y. J.; Jiang, H. R.; Harn, Y. W.; Liu, X. Q.; Su, C. L.; Jin, H. L.; Li, Y.; Wang, S. et al. A robust route to Co2(OH)2CO3 ultrathin nanosheets with superior lithium storage capability templated by aspartic acid-functionalized graphene oxide. Adv. Energy Mater. 2019, 9, 1901093.

[42]

Dörfler, S.; Strubel, P.; Jaumann, T.; Troschke, E.; Hippauf, F.; Kensy, C.; Schökel, A.; Althues, H.; Giebeler, L.; Oswald, S. et al. On the mechanistic role of nitrogen-doped carbon cathodes in lithium-sulfur batteries with low electrolyte weight portion. Nano Energy 2018, 54, 116–128.

[43]

Li, M.; Zhang, Y. N.; Bai, Z. Y.; Liu, W. W.; Liu, T. C.; Gim, J.; Jiang, G. P.; Yuan, Y. F.; Luo, D.; Feng, K. et al. A lithium-sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio. Adv. Mater. 2018, 30, 1804271.

[44]

Tan, J. C.; Li, D.; Liu, Y. Q.; Zhang, P.; Qu, Z. H.; Yan, Y.; Hu, H.; Cheng, H. Y.; Zhang, J. X.; Dong, M. Y. et al. A self-supported 3D aerogel network lithium-sulfur battery cathode: Sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. J. Mater. Chem. A 2020, 8, 7980–7990.

[45]

Zhao, S.; Kang, Y. J.; Liu, M. J.; Wen, B. H.; Fang, Q.; Tang, Y. Y.; He, S. C.; Ma, X.; Liu, M. K.; Yan, Y. Modulating the electronic structure of nanomaterials to enhance polysulfides confinement for advanced lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 18927–18946.

[46]

Zhang, Q.; Huang, Q. H.; Hao, S. M.; Deng, S. Y.; He, Q. M.; Lin, Z. Q.; Yang, Y. K. Polymers in lithium-sulfur batteries. Adv. Sci. 2022, 9, 2103798.

[47]

Li, Z. L.; Xiao, Z. B.; Wang, S. Q.; Cheng, Z. B.; Li, P. Y.; Wang, R. H. Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1902322.

Nano Research Energy
Article number: e9120049
Cite this article:
Liu H, Liu F, Qu Z, et al. High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Research Energy, 2023, 2: e9120049. https://doi.org/10.26599/NRE.2023.9120049

6845

Views

772

Downloads

46

Crossref

52

Scopus

Altmetrics

Received: 18 October 2022
Revised: 28 November 2022
Accepted: 11 December 2022
Published: 05 January 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return