AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries

Yunyun Xu1Hairong Xue1( )Xijuan Li1Xiaoli Fan2Peng Li1Tengfei Zhang1Kun Chang1Tao Wang1( )Jianping He1( )
Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
Show Author Information

Graphical Abstract

Abstract

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) as the novel porous materials have the merits of diverse, adjustable functionality, high porosity and surface area, which have great application prospects in the gas storage, separation and catalysis. In addition, their derivates make up for the insufficient of electronic conductivity and chemical stability of MOFs and COFs, and provide a new ideal for accurate control of material structure. Up to now, many efficient electrocatalysts have been designed based on MOFs, COFs and their derivates for O2 reduction/evolution reactions (ORR/OER) and CO2 reduction/evolution reactions (CO2RR/CO2ER) in the metal-air batteries. In this review, the latest development of MOFs, COFs and their derivates in the metal-air batteries is summarized, and we discuss the structural characteristics of these materials and their corresponding mechanisms of action. By comprehensively reviewing the advantages, challenges and prospects of MOFs and COFs, we hope that the organic framework materials will shed more profound insights into the development of electrocatalysis and energy storage in the future.

References

[1]

Nejat, P.; Jomehzadeh, F.; Taheri, M. M.; Gohari, M.; Majid, M. Z. A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sust. Energy Rev. 2015, 43, 843–862.

[2]

Kélouwani, S.; Agbossou, K.; Chahine, R. Model for energy conversion in renewable energy system with hydrogen storage. J. Power Sources 2005, 140, 392–399.

[3]

Fu, G. T.; Chen, Y. F.; Cui, Z. M.; Li, Y. T.; Zhou, W. D.; Xin, S.; Tang, Y. W.; Goodenough, J. B. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes. Nano Lett. 2016, 16, 6516–6522.

[4]

Qiao, Y.; Yi, J.; Wu, S. C.; Liu, Y.; Yang, S. X.; He, P.; Zhou, H. S. Li-CO2 electrochemistry: A new strategy for CO2 fixation and energy storage. Joule 2017, 1, 359–370.

[5]

Zhang, Z.; Zhang, Q.; Chen, Y. N.; Bao, J.; Zhou, X. L.; Xie, Z. J.; Wei, J. P.; Zhou, Z. The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem., Int. Ed. 2015, 54, 6550–6553.

[6]

Wen, X. D.; Zhang, Q. Q.; Guan, J. Q. Applications of metal-organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 2020, 409, 213214.

[7]

Cui, Z. M.; Fu, G. T.; Li, Y. T.; Goodenough, J. B. Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal-air batteries. Angew. Chem., Int. Ed. 2017, 56, 9901–9905.

[8]

Rosi, N. L.; Eddaoudi, M.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Infinite secondary building units and forbidden catenation in metal-organic frameworks. Angew. Chem., Int. Ed. 2002, 41, 284–287.

[9]

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

[10]

Millward, A. R.; Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999.

[11]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

[12]

Dang, Y. T.; Hoang, H. T.; Dong, H. C.; Bui, K. B. T.; Nguyen, L. H. T.; Phan, T. B.; Kawazoe, Y.; Doan, T. L. H. Microwave-assisted synthesis of nano Hf-and Zr-based metal-organic frameworks for enhancement of curcumin adsorption. Micropor. Mesopor. Mater. 2020, 298, 110064.

[13]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[14]

Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 2005, 127, 13519–13521.

[15]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[16]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzge, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[17]

Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481.

[18]

Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; Côté, A. P.; Yaghi, O. M. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc. 2008, 130, 11872–11873.

[19]

Fang, Q. R.; Zhuang, Z. B.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J. H.; Qiu, S. L.; Yan, Y. S. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 2014, 5, 4503.

[20]

Du, Y.; Yang, H. S.; Whiteley, J. M.; Wan, S.; Jin, Y. H.; Lee, S. H.; Zhang, W. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem., Int. Ed. 2016, 55, 1737–1741.

[21]

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

[22]

Zhang, Y. Y.; Duan, J. Y.; Ma, D.; Li, P. F.; Li, S. W.; Li, H. W.; Zhou, J. W.; Ma, X. J.; Feng, X.; Wang, B. Three-dimensional anionic cyclodextrin-based covalent organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 16313–16317.

[23]

Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klöck, C.; O'Keeffe, M.; Yaghi, O. M. A crystalline imine-linked 3D porous covalent organic framework. J. Am. Chem. Soc. 2009, 131, 4570–4571.

[24]

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

[25]

Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; Côté, A. P.; Kim, J.; Yaghi, O. M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 2005, 127, 7110–7118.

[26]

Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Gas adsorption sites in a large-pore metal-organic framework. Science 2005, 309, 1350–1354.

[27]

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[28]

Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

[29]

Xia, Q.; Wang, H.; Huang, B. B.; Yuan, X. Z.; Zhang, J. J.; Zhang, J.; Jiang, L. B.; Xiong, T.; Zeng, G. M. State-of-the-art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications. Small 2019, 15, 1803088.

[30]

Liu, J. W.; Xie, D. X.; Shi, W.; Cheng, P. Coordination compounds in lithium storage and lithium-ion transport. Chem. Soc. Rev. 2020, 49, 1624–1642.

[31]

Zhang, L.; Liu, H. W.; Shi, W.; Cheng, P. Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coord. Chem. Rev. 2019, 388, 293–309.

[32]

Liu, J. W.; Xie, D. X.; Xu, X. F.; Jiang, L. Z.; Si, R.; Shi, W.; Cheng, P. Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage. Nat. Commun. 2021, 12, 3131.

[33]

Huang, N. Y.; He, H.; Liu, S. J.; Zhu, H. L.; Li, Y. J.; Xu, J.; Huang, J. R.; Wang, X.; Liao, P. Q.; Chen, X. M. Electrostatic attraction-driven assembly of a metal-organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO. J. Am. Chem. Soc. 2021, 143, 17424–7430.

[34]

Paz, F. A. A.; Klinowski, J.; Vilela, S. M. F.; Tomé, J. P. C.; Cavaleiro, J. A. S.; Rocha, J. Ligand design for functional metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 1088–1110.

[35]

Schoedel, A.; Ji, Z.; Yaghi, O. M. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 2016, 1, 16034.

[36]

Zhang, H. B.; Nai, J. W.; Yu, L.; Lou, X. W. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77–107.

[37]

Zhu, B. J.; Liang, Z. B.; Xia, D. G.; Zou, R. Q. Metal-organic frameworks and their derivatives for metal-air batteries. Energy Storage Mater. 2019, 23, 757–771.

[38]

Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.

[39]

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

[40]

Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875–3877.

[41]

Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M. Pd nanoparticles embedded into a metal-organic framework: Synthesis, structural characteristics, and hydrogen sorption properties. J. Am. Chem. Soc. 2010, 132, 2991–2997.

[42]

Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 2019, 9, 7270–7284.

[43]

Li, X. N.; Liu, L. H.; Ren, X. Y.; Gao, J. J.; Huang, Y. Q.; Liu, B. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 2020, 6, abb6833.

[44]

Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.

[45]

Côté, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 2007, 129, 12914–12915.

[46]

Lyu, H.; Diercks C, S.; Zhu, C. H.; Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 6848–6852.

[47]

Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. L. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem., Int. Ed. 2008, 47, 8826–8830.

[48]

Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063.

[49]

Gottschling K.; Savasci G.; Vignolo-González H.; Schmidt S.; Mauker P.; Banerjee T.; Rovó P.; Ochsenfeld C.; Lotsch B. V. Rational design of covalent cobaloxime-COF hybrids for enhanced photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 12146–12156.

[50]

Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. An azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135, 17310–17313.

[51]

Jackson, K. T.; Reich, T. E.; El-Kaderi, H. M. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem. Commun. 2012, 48, 8823–8825.

[52]

Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952–14955.

[53]

Huang, N.; Chen, X.; Krishna, R.; Jiang, D. L. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem., Int. Ed. 2015, 54, 2986–2990.

[54]

Pachfule, P.; Kandambeth, S.; Díaz, D. D.; Banerjee, R. Highly stable covalent organic framework-Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem. Commun. 2014, 50, 3169–3172.

[55]

Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883.

[56]

Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 2018, 140, 4623–4631.

[57]

Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 2018, 5, 1700691.

[58]

Arafat, Y.; Azhar, M. R.; Zhong, Y. J.; Abid, H. R.; Tadé, M. O.; Shao, Z. P. Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc-air batteries. Adv. Energy Mater. 2021, 11, 2100514.

[59]

Jo, Y. N.; Kim, H. S.; Prasanna, K.; Ilango, P. R.; Lee, W. J.; Eom, S. W.; Lee, C. W. Effect of additives on electrochemical and corrosion behavior of gel type electrodes for Zn-air system. Ind. Eng. Chem. Res. 2014, 53, 17370–17375.

[60]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[61]

Davari, E.; Ivey, D. G. Bifunctional electrocatalysts for Zn-air batteries. Sustainable Energy Fuels 2018, 2, 39–67.

[62]

Shu, X. X.; Chen, Q. W.; Yang, M. M.; Liu, M. M.; Ma, J. Z.; Zhang, J. T. Tuning Co-catalytic sites in hierarchical porous N-doped carbon for high-performance rechargeable and flexible Zn-air battery. Adv. Energy Mater. 2023, 13, 2202871.

[63]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[64]

Dou, S.; Li, X. Y.; Tao, L.; Huo, J.; Wang, S. Y. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727–9730.

[65]

Gu, C. N.; Li, J. J.; Liu, J. P.; Wang, H.; Peng, Y.; Liu, C. S. Conferring supramolecular guanosine gel nanofiber with ZIF-67 for high-performance oxygen reduction catalysis in rechargeable zinc-air batteries. Appl. Catal. B: Environ. 2021, 286, 119888.

[66]

Qian, Y. H.; Hu, Z. G.; Ge, X. M.; Yang, S. L.; Peng, Y. W.; Kang, Z. X.; Liu, Z. L.; Lee, J. Y.; Zhao, D. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017, 111, 641–650.

[67]

Liang, Z. Z.; Guo, H. B.; Zhou, G. J.; Guo, K.; Wang, B.; Lei, H. T.; Zhang, W.; Zheng, H. Q.; Apfel, U. P.; Cao, R. Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 8472–8476.

[68]

Zhang, W. D.; Hu, Q. T.; Wang, L. L.; Gao, J.; Zhu, H. Y.; Yan, X. D.; Gu, Z. G. In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 286, 119906.

[69]

Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 2016, 49, 2796–2806.

[70]

Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.

[71]

Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1702300.

[72]

Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

[73]

Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

[74]

Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

[75]

Xu, Q.; Qian, J.; Luo, D.; Liu, G. J.; Guo, Y.; Zeng, G. F. Ni/Fe clusters and nanoparticles confined by covalent organic framework derived carbon as highly active catalysts toward oxygen reduction reaction and oxygen evolution reaction. Adv. Sustain. Syst. 2020, 4, 2000115.

[76]

Liu, W. P.; Wang, C. M.; Zhang, L. J.; Pan, H. H.; Liu, W. B.; Chen, J.; Yang, D. J.; Xiang, Y. J.; Wang, K.; Jiang, J. Z. et al. Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. J. Mater. Chem. A 2019, 7, 3112–3119.

[77]

Park, J. H.; Lee, C. H.; Ju, J. M.; Lee, J. H.; Seol, J.; Lee, S. U.; Kim, J. H. Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2101727.

[78]

Li, W.; Wang, J. Y.; Chen, J. X.; Chen, K.; Wen, Z. H.; Huang, A. S. Core-shell carbon-based bifunctional electrocatalysts derived from COF@MOF hybrid for advanced rechargeable Zn-air batteries. Small 2022, 18, 2202018.

[79]

Peng, P.; Shi, L.; Huo, F.; Mi, C. X.; Wu, X. H.; Zhang, S. J.; Xiang, Z. H. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 2019, 5, eaaw2322.

[80]

Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Tian, G. Y.; Schmidt, J.; Thomas, A. Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 2019, 31, 3274–3280.

[81]

Peng, P.; Shi, L.; Huo, F.; Zhang, S. J.; Mi, C. X.; Cheng, Y. H.; Xiang, Z. H. In situ charge exfoliated soluble covalent organic framework directly used for Zn-air flow battery. ACS Nano 2019, 13, 878–884.

[82]

Xie, J. F.; Wang, Y. B. Recent development of CO2 electrochemistry from Li-CO2 batteries to Zn-CO2 batteries. Acc. Chem. Res. 2019, 52, 1721–1729.

[83]

Teng, X.; Niu, Y. L.; Gong, S. Q.; Xu, M. Z.; Liu, X.; Ji, L. L.; Chen, Z. F. In/ZnO@C hollow nanocubes for efficient electrochemical reduction of CO2 to formate and rechargeable Zn-CO2 batteries. Mater. Chem. Front. 2021, 5, 6618–6627.

[84]

Xie, J. F.; Wang, X. Y.; Lv, J. Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B.; Yao, J. N. Reversible aqueous zinc-CO2 batteries based on CO2-HCOOH interconversion. Angew. Chem., Int. Ed. 2018, 57, 16996–17001.

[85]

Peng, M. Y.; Ci, S. Q.; Shao, P.; Cai, P. W.; Wen, Z. H. Cu3P/C nanocomposites for efficient electrocatalytic CO2 reduction and Zn-CO2 battery. J. Nanosci. Nanotechnol. 2019, 19, 3232–3236.

[86]

Teng, X.; Lu, J. M.; Niu, Y. L.; Gong, S. Q.; Xu, M. Z.; Meyer, T. J.; Chen, Z. F. Selective CO2 reduction to formate on a Zn-based electrocatalyst promoted by tellurium. Chem. Mater. 2022, 34, 6036–6047.

[87]

Peng, J. X.; Yang, W. J.; Jia, Z. H.; Jiao, L.; Jiang, H. L. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 2022, 15, 10063–10069.

[88]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[89]

Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

[90]

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

[91]

Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.

[92]

Zhang, S. S.; Foster, D.; Read, J. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J. Power Sources 2010, 195, 1235–1240.

[93]

Zhang, X. H.; Dong, P. P.; Lee, J. I.; Gray, J. T.; Cha, Y. H.; Ha, S.; Song, M. K. Enhanced cycling performance of rechargeable Li-O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts. Energy Storage Mater. 2019, 17, 167–177.

[94]

Liang, Z. B.; Qu, C.; Guo, W. H.; Zou, R. Q.; Xu, Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 2018, 30, 1702891.

[95]

Li, Q.; Xu, P.; Gao, W.; Ma, S.; Zhang, G.; Cao, R.; Cho, J.; Wang, H. L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Adv. Mater. 2014, 26, 1378–1386.

[96]

Wu, D. F.; Guo, Z. Y.; Yin, X. B.; Pang, Q. Q.; Tu, B. B.; Zhang, L. J.; Wang, Y. G.; Li, Q. W. Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 2014, 26, 3258–3262.

[97]

Lyu, Z. Y.; Lim, G. J. H.; Guo, R.; Kou, Z. K.; Wang, T. T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 2019, 29, 1806658.

[98]

Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 2019, 12, 1555–1562.

[99]

Yuan, M. W.; Wang, R.; Fu, W. B.; Lin, L.; Sun, Z. M.; Long, X. G.; Zhang, S. T.; Nan, C. Y.; Sun, G. B.; Li, H. F. et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries. ACS Appl. Mater. Interfaces 2019, 11, 11403–11413.

[100]

Meng, H. B.; Han, Y.; Zhou, C. H.; Jiang, Q. Y.; Shi, X. F.; Zhan, C. H.; Zhang, R. F. Conductive metal-organic frameworks: Design, synthesis, and applications. Small Methods 2020, 4, 2000396.

[101]

Majidi, L.; Ahmadiparidari, A.; Shan, N.; Singh, S. K.; Zhang, C. J.; Huang, Z. H.; Rastegar, S.; Kumar, K.; Hemmat, Z.; Ngo, A. T. et al. Nanostructured conductive metal organic frameworks for sustainable low charge overpotentials in Li-air batteries. Small 2022, 18, 2102902.

[102]

Choi, W. H.; Moon, B. C.; Park, D. G.; Choi, J. W.; Kim, K. H.; Shin, J. S.; Kim, M. G.; Choi, K. M.; Kang, J. K. Autogenous production and stabilization of highly loaded sub-nanometric particles within multishell hollow metal-organic frameworks and their utilization for high performance in Li-O2 batteries. Adv. Sci. 2020, 7, 2000283.

[103]

Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

[104]

Wang, X. X.; Chi, X. W.; Li, M. L.; Guan, D. H.; Miao, C. L.; Xu, J. J. Metal-organic frameworks derived electrolytes build multiple wetting interfaces for integrated solid-state lithium-oxygen battery. Adv. Funct. Mater. 2022, 32, 2113235.

[105]

Qiao, Y.; He, Y. B.; Wu, S. C.; Jiang, K. Z.; Li, X.; Guo, S. H.; He, P.; Zhou, H. S. MOF-based separator in an Li-O2 battery: An effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett. 2018, 3, 463–468.

[106]

Deng, H.; Chang, Z.; Qiu, F. L.; Qiao, Y.; Yang, H. J.; He, P.; Zhou, H. S. A safe organic oxygen battery built with Li-based liquid anode and MOFs separator. Adv. Energy Mater. 2020, 10, 1903953.

[107]

Liu, Y. L.; Wang, R.; Lyu, Y. C.; Li, H.; Chen, L. Q. Rechargeable Li/CO2-O2 (2: 1) battery and Li/CO2 battery. Energy Environ. Sci. 2014, 7, 677–681.

[108]

Mu, X. W.; Pan, H.; He, P.; Zhou, H. S. Li-CO2 and Na-CO2 batteries: Toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, 1903790.

[109]

Takechi, K.; Shiga, T.; Asaoka, T. A Li-O2/CO2 battery. Chem. Commun. 2011, 47, 3463–3465.

[110]

Xu, S. M.; Das, S. K.; Archer, L. A. The Li-CO2 battery: A novel method for CO2 capture and utilization. RSC Adv. 2013, 3, 6656–6660.

[111]

Hou, Y. Y.; Wang, J. Z.; Liu, L. L.; Liu, Y. Q.; Chou, S. L.; Shi, D. Q.; Liu, H. K.; Wu, Y. P.; Zhang, W. M.; Chen, J. Mo2C/CNT: An efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.

[112]

Zhou, J. W.; Li, X. L.; Yang, C.; Li, Y. C.; Guo, K. K.; Cheng, J. L.; Yuan, D. W.; Song, C. H.; Lu, J.; Wang, B. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency. Adv. Mater. 2019, 31, 1804439.

[113]

Xue, H. R.; Gong, H.; Lu, X. Y.; Gao, B.; Wang, T.; He, J. P.; Yamauchi, Y.; Sasaki, T.; Ma, R. Z. Aqueous formate-based Li-CO2 battery with low charge overpotential and high working voltage. Adv. Energy Mater. 2021, 11, 2101630.

[114]

Li, S. W.; Dong, Y.; Zhou, J. W.; Liu, Y.; Wang, J. M.; Gao, X.; Han, Y. Z.; Qi, P. F.; Wang, B. Carbon dioxide in the cage: Manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries. Energy Environ. Sci. 2018, 11, 1318–1325.

[115]

Dong, L. Z.; Zhang, Y.; Lu, Y. F.; Zhang, L.; Huang, X.; Wang, J. H.; Liu, J.; Li, S. L.; Lan, Y. Q. A well-defined dual Mn-site based metal-organic framework to promote CO2 reduction/evolution in Li-CO2 batteries. Chem. Commun. 2021, 57, 8937–8940.

[116]

Xu, Y. Y.; Gong, H.; Ren, H.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery. Small 2022, 18, 2203917.

[117]

Lei, Z. D.; Xue, Y. C.; Chen, W. Q.; Qiu, W. H.; Zhang, Y.; Horike, S.; Tang, L. MOFs-based heterogeneous catalysts: New opportunities for energy-related CO2 conversion. Adv. Energy Mater. 2018, 8, 1801587.

[118]

Huang, S.; Chen, D. D.; Meng, C.; Wang, S. J.; Ren, S.; Han, D. M.; Xiao, M.; Sun, L. Y.; Meng, Y. Z. CO2 nanoenrichment and nanoconfinement in cage of imine covalent organic frameworks for high-performance CO2 cathodes in Li-CO2 battery. Small 2019, 15, 1904830.

[119]

Li, X.; Wang, H.; Chen, Z. X.; Xu, H. S.; Yu, W.; Liu, C. B.; Wang, X. W.; Zhang, K.; Xie, K. Y.; Loh, K. P. Covalent-organic-framework-based Li-CO2 batteries. Adv. Mater. 2019, 31, 1905879.

[120]

Jana, A.; Bähring, S.; Ishida, M.; Goeb, S.; Canevet, D.; Sallé, M.; Jeppesen, J. O.; Sessler, J. L. Functionalised tetrathiafulvalene-(TTF-) macrocycles: Recent trends in applied supramolecular chemistry. Chem. Soc. Rev. 2018, 47, 5614–5645.

[121]

Zhang, Y.; Zhong, R. L.; Lu, M.; Wang, J. H.; Jiang, C.; Gao, G. K.; Dong, L. Z.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Single metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries. ACS Cent. Sci. 2021, 7, 175–182.

[122]

Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

[123]

Peled, E.; Golodnitsky, D.; Hadar, R.; Mazor, H.; Goor, M.; Burstein, L. Challenges and obstacles in the development of sodium-air batteries. J. Power Sources 2013, 244, 771–776.

[124]

Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

[125]

Peled, E.; Golodnitsky, D.; Mazor, H.; Goor, M.; Avshalomov, S. Parameter analysis of a practical lithium-and sodium-air electric vehicle battery. J. Power Sources 2011, 196, 6835–6840.

[126]

Sun, Q.; Yang, Y.; Fu, Z. W. Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte. Electrochem. Commun. 2012, 16, 22–25.

[127]

Hartmann, P.; Bender, C. L.; Sann, J.; Dürr, A. K.; Jansen, M.; Janek, J.; Adelhelm, P. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Phys. Chem. Chem. Phys. 2013, 15, 11661–11672.

[128]

Hartmann, P.; Bender, C. L.; Vračar, M.; Dürr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 2013, 12, 228–232.

[129]

Das, S. K.; Xu, S. M.; Archer, L. A. Carbon dioxide assist for non-aqueous sodium-oxygen batteries. Electrochem. Commun. 2013, 27, 59–62.

[130]

Xu, S. M.; Lu, Y. Y.; Wang, H. S.; Abruña, H. D.; Archer, L. A. A rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes. J. Mater. Chem. A 2014, 2, 17723–17729.

[131]

Wu, Y. Q.; Qiu, X. C.; Liang, F.; Zhang, Q. K.; Koo, A.; Dai, Y. N.; Lei, Y.; Sun, X. L. A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Appl. Catal. B: Environ. 2019, 241, 407–414.

[132]

Hu, M.; Reboul, J.; Furukawa, S.; Torad, N. L.; Ji, Q. M.; Srinivasu, P.; Ariga, K.; Kitagawa, S.; Yamauchi, Y. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 2012, 134, 2864–2867.

[133]

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

[134]

Zhu, J. Y.; Qu, T.; Su, F. M.; Wu, Y. Q.; Kang, Y.; Chen, K. F.; Yao, Y. C.; Ma, W. H.; Yang, B.; Dai, Y. N. et al. Highly dispersed Co nanoparticles decorated on a N-doped defective carbon nano-framework for a hybrid Na-air battery. Dalton Trans. 2020, 49, 1811–1821.

[135]

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

[136]

Zaromb, S.; Foust, R. A. Jr. Feasibility of electrolyte regeneration in Al batteries. J. Electrochem. Soc. 1962, 109, 1191.

[137]

Zaromb, S. The use and behavior of aluminum anodes in alkaline primary batteries. J. Electrochem. Soc. 1962, 109, 1125.

[138]

Mokhtar, M.; Talib, M. Z. M.; Majlan, E. H.; Tasirin, S. M.; Ramli, W. M. F. W.; Daud, W. R. W.; Sahari, J. Recent developments in materials for aluminum-air batteries: A review. J. Ind. Eng. Chem. 2015, 32, 1–20.

[139]

Li, J. S.; Zhou, N.; Song, J. Y.; Fu, L.; Yan, J.; Tang, Y. G.; Wang, H. Y. Cu-MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of ketjenblack carbon in Al-air battery. ACS Sustain. Chem. Eng. 2018, 6, 413–421.

[140]

Liu, Y. S.; Jiang, H.; Hao, J. Y.; Liu, Y. L.; Shen, H. B.; Li, W. Z.; Li, J. Metal-organic framework-derived reduced graphene oxide-supported ZnO/ZnCo2O4/C hollow nanocages as cathode catalysts for aluminum-O2 batteries. ACS Appl. Mater. Interfaces 2017, 9, 31841–31852.

[141]

Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2017, 2, 525–532.

[142]

Barthram, A. M.; Cleary, R. L.; Kowallick, R.; Ward, M. D. A new redox-tunable near-IR dye based on a trinuclear ruthenium(Ⅱ) complex of hexahydroxytriphenylene. Chem. Commun. 1998, 24, 2695–2696.

[143]

Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511–3513.

[144]

Gu, S. N.; Bai, Z. W.; Majumder, S.; Huang, B. L.; Chen, G. H. Conductive metal-organic framework with redox metal center as cathode for high rate performance lithium ion battery. J. Power Sources 2019, 429, 22–29.

[145]

Bai, Y.; Liu, C. L.; Shan, Y. Y.; Chen, T. T.; Zhao, Y.; Yu, C.; Pang, H. Metal-organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv. Energy Mater. 2022, 12, 2100346.

[146]

Zhu, D. Y.; Xu, G. Y.; Barnes, M.; Li, Y. L.; Tseng, C. P.; Zhang, Z. Q.; Zhang, J. J.; Zhu, Y. F.; Khalil, S.; Rahman, M. M. et al. Covalent organic frameworks for batteries. Adv. Funct. Mater. 2021, 31, 2100505.

Nano Research Energy
Article number: e9120052
Cite this article:
Xu Y, Xue H, Li X, et al. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Research Energy, 2023, 2: e9120052. https://doi.org/10.26599/NRE.2023.9120052

5368

Views

993

Downloads

38

Crossref

36

Scopus

Altmetrics

Received: 30 December 2022
Revised: 23 January 2023
Accepted: 25 January 2023
Published: 03 March 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return