AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (27.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress

Chunyan Wang1Alex Schechter2Ligang Feng1( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Department of Chemical Science, Ariel University, Ariel 40700, Israel
Show Author Information

Graphical Abstract

Abstract

Iridium (Ir)-based catalysts are highly efficient for the anodic oxygen evolution reaction (OER) due to high stability and anti-corrosion ability in the strong acid electrolyte. Recently, intensive attention has been directed to novel, efficient, and low-cost Ir-based catalysts to overcome the challenges of their application in the water electrolysis technique. To make a comprehensive understanding of the recently developed Ir-based catalysts and their catalytic properties, the mechanism and catalytic promotion principles of Ir-based catalysts were discussed for OER in the acid condition aimed for the proton exchange membrane water electrolyzer (PEMWE) in this review. The OER catalytic mechanisms of the adsorbate evolution mechanism and the lattice oxygen mechanism were first presented and discussed for easy understanding of the catalytic mechanism; a brief perspective analysis of promotion principles from the aspects of geometric effect, electronic effect, synergistic effect, defect engineering, support effect was concluded. Then, the latest progress and the practical application of Ir-based catalysts were introduced in detail, which was classified into the varied composition of Ir catalyst in terms of alloys, hetero-element doping, perovskite, pyrochlore, heterostructure, core–shell structure, and supported catalysts. Finally, the problems and challenges faced by the current Ir-based catalyst in the acidic electrolyte were put forward. It is concluded that highly efficient catalysts with low Ir loading should be developed in the future, and attention should be paid to probing the structural and performance correlation, and their application in real PEMWE devices. Hopefully, the current effort can be helpful in the catalysis mechanism understanding of Ir-based catalysts for OER, and instructive to the novel efficient catalysts design and fabrication.

References

[1]

Kim, M.; Park, J.; Wang, M. Y.; Wang, Q. X.; Kim, M. J.; Kim, J. Y.; Cho, H. S.; Kim, C. H.; Feng, Z. X.; Kim, B. H. et al. Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media. Appl. Catal. B: Environ. 2022, 302, 120834.

[2]

Zhou, F.; Zhang, L. J.; Li, J.; Wang, Q.; Chen, Y. R.; Chen, H. L.; Lu, G. L.; Chen, G.; Jin, H. L.; Wang, S. et al. Novel engineering of ruthenium-based electrocatalysts for acidic water oxidation: A mini review. Eng. Rep. 2021, 3, e12437.

[3]

Kim, T.; Kim, B.; Kwon, T.; Kim, H. Y.; Kim, J. Y.; Lee, K. Multimetallic nanostructures for electrocatalytic oxygen evolution reaction in acidic media. Mater. Chem. Front. 2021, 5, 4445–4473.

[4]

Su, H. ; Zhou, W. L. ; Zhou, W. ; Li, Y. L. ; Zheng, L. R. ; Zhang, H. ; Liu, M. H. ; Zhang, X. X. ; Sun, X. ; Xu, Y. Z. et al. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118.

[5]

Li, M.; Feng, L. G. Advances of phosphide promoter assisted Pt based catalyst for electrooxidation of methanol. J. Electrochem. 2022, 28, 2106211.

[6]

Gu, X. K.; Camayang, J. C. A.; Samira, S.; Nikolla, E. Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities. J. Catal. 2020, 388, 130–140.

[7]

Guo, H. Y.; Fang, Z. W.; Li, H.; Fernandez, D.; Henkelman, G.; Humphrey, S. M.; Yu, G. H. Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution. ACS Nano 2019, 13, 13225–13234.

[8]

Tong, Y.; Chen, P. Z. Cobalt phosphide nanowires with adjustable iridium, realizing excellent bifunctional activity for acidic water splitting. Dalton Trans. 2021, 50, 7364–7371.

[9]

Cao, W. J.; Xu, Y.; Wang, Z. M.; Luo, J. Y.; Khan, M. A.; Zhang, L.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Ir cluster-decorated carbon composite as bifunctional electrocatalysts for acidic stable overall water splitting. J. Electrochem. Soc. 2020, 167, 104511.

[10]

Zhang, L. H.; Fan, Q.; Li, K.; Zhang, S.; Ma, X. B. First-row transition metal oxide oxygen evolution electrocatalysts: Regulation strategies and mechanistic understandings. Sustain. Energy Fuels 2020, 4, 5417–5432.

[11]

Pi, Y. C.; Shao, Q.; Zhu, X.; Huang, X. Q. Dynamic structure evolution of composition segregated iridium-nickel rhombic dodecahedra toward efficient oxygen evolution electrocatalysis. ACS Nano 2018, 12, 7371–7379.

[12]

Wang, Z. Y.; Gao, W. L.; Xu, Q. L.; Ren, X. N.; Xu, S.; Zhu, S. K.; Niu, X. P.; Li, X. X.; Zhao, R.; Han, Y. X. et al. Influence of the MnO2 phase on oxygen evolution reaction performance for low-loading iridium electrocatalysts. ChemElectroChem 2021, 8, 418–424.

[13]

Strickler, A. L.; Flores, R. A.; King, L. A.; Nørskov, J. K.; Bajdich, M.; Jaramillo, T. F. Systematic investigation of iridium-based bimetallic thin film catalysts for the oxygen evolution reaction in acidic media. ACS Appl. Mater. Interfaces 2019, 11, 34059–34066.

[14]

Cai, C.; Han, S. B.; Tang, Y. L. Engineering oxygen vacancies on dendrite-like IrO2 for the oxygen evolution reaction in acidic solution. Sustain. Energy Fuels 2020, 4, 2462–2468.

[15]

Song, H. J.; Yoon, H.; Ju, B.; Kim, D. W. Highly efficient perovskite-based electrocatalysts for water oxidation in acidic environments: A mini review. Adv. Energy Mater. 2021, 11, 2002428.

[16]

Shi, X. Y.; Zhu, H. W.; Du, J.; Cao, L. J.; Wang, X. L.; Liang, H. P. Directed assembly of ultrasmall nitrogen coordinated Ir nanoparticles for enhanced electrocatalysis. Electrochim. Acta 2021, 370, 137710.

[17]

Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

[18]

Liu, Y. P.; Liang, X.; Chen, H.; Gao, R. Q.; Shi, L.; Yang, L.; Zou, X. X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 2021, 42, 1054–1077.

[19]

Arminio-Ravelo, J. A.; Quinson, J.; Pedersen, M. A.; Kirkensgaard, J. J. K.; Arenz, M.; Escudero-Escribano, M. Synthesis of iridium nanocatalysts for water oxidation in acid: Effect of the surfactant. ChemCatChem 2020, 12, 1282–1287.

[20]

Yang, X. D.; Zhao, Z. X.; Yu, X.; Feng, L. G. Electrochemical hydrogen evolution reaction boosted by constructing Ru nanoparticles assembled as a shell over semimetal Te nanorod surfaces in acid electrolyte. Chem. Commun. 2019, 55, 1490–1493.

[21]

He, J.; Zhou, X.; Xu, P.; Sun, J. M. Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. Adv. Energy Mater. 2021, 11, 2102883.

[22]

Hubert, M. A.; Patel, A. M.; Gallo, A.; Liu, Y. Z.; Valle, E.; Ben-Naim, M.; Sanchez, J.; Sokaras, D.; Sinclair, R.; Nørskov, J. K. et al. Acidic oxygen evolution reaction activity–stability relationships in Ru-based pyrochlores. ACS Catal. 2020, 10, 12182–12196.

[23]

Escudero-Escribano, M.; Pedersen, A. F.; Paoli, E. A.; Frydendal, R.; Friebel, D.; Malacrida, P.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Importance of surface IrOx in stabilizing RuO2 for oxygen evolution. J. Phys. Chem. B 2018, 122, 947–955.

[24]

Gou, W. Y.; Zhang, M. K.; Zou, Y.; Zhou, X. M.; Qu, Y. Q. Iridium-chromium oxide nanowires as highly performed OER catalysts in acidic media. ChemCatChem 2019, 11, 6008–6014.

[25]

Oh, H. S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 2015, 6, 3321–3328.

[26]

Lebedev, D.; Copéret, C. Small, narrowly distributed iridium nanoparticles supported on indium tin oxide for efficient anodic water oxidation. ACS Appl. Energy Mater. 2019, 2, 196–200.

[27]

Li, H. S.; Liu, H. H.; Qin, Q.; Liu, X. E. BaLaIr double mixed metal oxides as competitive catalysts for oxygen evolution electrocatalysis in acidic media. Inorg. Chem. Front. 2022, 9, 702–708.

[28]

Zu, L. H.; Qian, X. Y.; Zhao, S. L.; Liang, Q. H.; Chen, Y. E.; Liu, M.; Su, B. J.; Wu, K. H.; Qu, L. B.; Duan, L. L. et al. Self-assembly of Ir-based nanosheets with ordered interlayer space for enhanced electrocatalytic water oxidation. J. Am. Chem. Soc. 2022, 144, 2208–2217.

[29]

Li, Q.; Li, J. J.; Xu, J. Y.; Zhang, N.; Li, Y. P.; Liu, L. F.; Pan, D.; Wang, Z. C.; Deepak, F. L. Ultrafine-grained porous Ir-based catalysts for high-performance overall water splitting in acidic media. ACS Appl. Energy Mater. 2020, 3, 3736–3744.

[30]

Zagalskaya, A. ; Evazzade, I. ; Alexandrov, V. Ab initio thermodynamics and kinetics of the lattice oxygen evolution reaction in iridium oxides. ACS Energy Lett. 2021, 6, 1124–1133.

[31]

Kim, J.; Kwon, T.; Yu, S.; Chun, S. Y.; Oh, A.; Kim, J. M.; Baik, H.; Ham, H. C.; Kim, J. Y.; Kwak, K. et al. IrCo nanocacti on CoxSy nanocages as a highly efficient and robust electrocatalyst for the oxygen evolution reaction in acidic media. Nanoscale 2020, 12, 17074–17082.

[32]

Zheng, Y.; Zhang, F. R.; Wang, G. L.; Lai, D. C.; Zou, L. L.; Cheng, Q. Q.; Li, J.; Zou, Z. Q.; Yang, H. CO induced phase-segregation to construct robust and efficient IrRux@Ir core–shell electrocatalyst towards acidic oxygen evolution. J. Power Sources 2022, 528, 231189.

[33]

Lim, J.; Kang, G.; Lee, J. W.; Jeon, S. S.; Jeon, H.; Kang, P. W.; Lee, H. Amorphous Ir atomic clusters anchored on crystalline IrO2 nanoneedles for proton exchange membrane water oxidation. J. Power Sources 2022, 524, 231069.

[34]

An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

[35]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 2021, 33, 2004243.

[36]

She, L. N.; Zhao, G. Q.; Ma, T. Y.; Chen, J.; Sun, W. P.; Pan, H. G. On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 2022, 32, 2108465.

[37]

Hu, S. Q.; Ge, S. Y.; Liu, H. M.; Kang, X.; Yu, Q. M.; Liu, B. L. Low-dimensional electrocatalysts for acidic oxygen evolution: Intrinsic activity, high current density operation, and long-term stability. Adv. Funct. Mater. 2022, 32, 2201726.

[38]

Shi, Z. P.; Wang, X.; Ge, J. J.; Liu, C. P.; Xing, W. Fundamental understanding of the acidic oxygen evolution reaction: Mechanism study and state-of-the-art catalysts. Nanoscale 2020, 12, 13249–13275.

[39]

Harzandi, A. M.; Shadman, S.; Nissimagoudar, A. S.; Kim, D. Y.; Lim, H. D.; Lee, J. H.; Kim, M. G.; Jeong, H. Y.; Kim, Y.; Kim, K. S. Ruthenium core–shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 2021, 11, 2003448.

[40]

Ma, C. L.; Sun, W.; Qamar Zaman, W.; Zhou, Z. H.; Zhang, H.; Shen, Q. C.; Cao, L. M.; Yang, J. Lanthanides regulated the amorphization–crystallization of IrO2 for outstanding OER performance. ACS Appl. Mater. Interfaces 2020, 12, 34980–34989.

[41]

Jin, H.; Choi, S.; Bang, G. J.; Kwon, T.; Kim, H. S.; Lee, S. J.; Hong, Y. J.; Lee, D. W.; Park, H. S.; Baik, H. et al. Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation. Energy Environ. Sci. 2022, 15, 1119–1130.

[42]

Cheng, J. F.; Yang, J.; Kitano, S.; Juhasz, G.; Higashi, M.; Sadakiyo, M.; Kato, K.; Yoshioka, S.; Sugiyama, T.; Yamauchi, M. et al. Impact of Ir-valence control and surface nanostructure on oxygen evolution reaction over a highly efficient Ir-TiO2 nanorod catalyst. ACS Catal. 2019, 9, 6974–6986.

[43]

Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

[44]

Sanchez Casalongue, H. G.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7169–7172.

[45]

Nakagawa, T.; Beasley, C. A.; Murray, R. W. Efficient electro-oxidation of water near its reversible potential by a mesoporous IrOx nanoparticle film. J. Phys. Chem. C 2009, 113, 12958–12961.

[46]

Touni, A.; Papaderakis, A.; Karfaridis, D.; Banti, A.; Mintsouli, I.; Lambropoulou, D.; Sotiropoulos, S. Oxygen evolution at IrO2-modified Ti anodes prepared by a simple galvanic deposition method. J. Electroanal. Chem. 2019, 855, 113485.

[47]

Schweinar, K.; Gault, B.; Mouton, I.; Kasian, O. Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction. J. Phys. Chem. Lett. 2020, 11, 5008–5014.

[48]

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

[49]

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

[50]

Kuo, D. Y.; Paik, H.; Kloppenburg, J.; Faeth, B.; Shen, K. M.; Schlom, D. G.; Hautier, G.; Suntivich, J. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2 (110): A discussion of the sabatier principle and its role in electrocatalysis. J. Am. Chem. Soc. 2018, 140, 17597–17605.

[51]

Yu, H. R.; Danilovic, N.; Wang, Y.; Willis, W.; Poozhikunnath, A.; Bonville, L.; Capuano, C.; Ayers, K.; Maric, R. Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading. Appl. Catal. B: Environ. 2018, 239, 133–146.

[52]

Gao, J. J.; Huang, X.; Cai, W. Z.; Wang, Q. L.; Jia, C. M.; Liu, B. Rational design of an iridium-tungsten composite with an iridium-rich surface for acidic water oxidation. ACS Appl. Mater. Interfaces 2020, 12, 25991–26001.

[53]

Elmaalouf, M.; Odziomek, M.; Duran, S.; Gayrard, M.; Bahri, M.; Tard, C.; Zitolo, A.; Lassalle-Kaiser, B.; Piquemal, J. Y.; Ersen, O. et al. The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nat. Commun. 2021, 12, 3935.

[54]

Xia, T. X.; Liu, C. B.; Lu, Y.; Jiang, W.; Li, H. J.; Ma, Y. C.; Wu, Y. Y.; Che, G. B. Regulating Ru-based double perovskite against lattice oxygen oxidation by incorporating Ir for efficient and stable acidic oxygen evolution reaction. Appl. Surf. Sci. 2022, 605, 154727.

[55]

Sun, W.; Song, Y.; Gong, X. Q.; Cao, L. M.; Yang, J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity. Chem. Sci. 2015, 6, 4993–4999.

[56]

Lee, W. H.; Yi, J.; Nong, H. N.; Strasser, P.; Chae, K. H.; Min, B. K.; Hwang, Y. J.; Oh, H. S. Electroactivation-induced IrNi nanoparticles under different pH conditions for neutral water oxidation. Nanoscale 2020, 12, 14903–14910.

[57]

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

[58]

Grimaud, A.; Demortière, A.; Saubanère, M.; Dachraoui, W.; Duchamp, M.; Doublet, M. L.; Tarascon, J. M. Erratum: Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2017, 2, 17002.

[59]

Yoo, J. S.; Rong, X.; Liu, Y. S.; Kolpak, A. M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 2018, 8, 4628–4636.

[60]

Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing, W. et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164–2176.

[61]

Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–6021.

[62]

Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

[63]

Zhang, R. H.; Dubouis, N.; Ben Osman, M.; Yin, W.; Sougrati, M. T.; Corte, D. A. D.; Giaume, D.; Grimaud, A. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem., Int. Ed. 2019, 58, 4571–4575.

[64]

Geiger, S.; Kasian, O.; Mingers, A. M.; Nicley, S. S.; Haenen, K.; Mayrhofer, K. J. J.; Cherevko, S. Cover feature: Catalyst stability benchmarking for the oxygen evolution reaction: The importance of backing electrode material and dissolution in accelerated aging studies (ChemSusChem 21/2017). ChemSusChem 2017, 10, 4121–4121.

[65]

Fan, R. Y.; Xie, J. Y.; Yu, N.; Chai, Y. M.; Dong, B. Interface design and composition regulation of cobalt-based electrocatalysts for oxygen evolution reaction. Int. J. Hydrog. Energy 2022, 47, 10547–10572.

[66]

Dong, Y.; Komarneni, S. Strategies to develop earth-abundant heterogeneous oxygen evolution reaction catalysts for pH-neutral or pH-near-neutral electrolytes. Small Methods 2021, 5, 2000719.

[67]

Zhang, Y.; Zhu, X. J.; Zhang, G. L.; Shi, P. D.; Wang, A. L. Rational catalyst design for oxygen evolution under acidic conditions: Strategies toward enhanced electrocatalytic performance. J. Mater. Chem. A 2021, 9, 5890–5914.

[68]
Exner, K. S. Boosting the stability of RuO2 in the acidic oxygen evolution reaction by tuning oxygen-vacancy formation energies: A viable approach beyond noble-metal catalysts? ChemElectroChem 2021, 8, 46–48.
[69]

Shan, J. Q.; Zheng, Y.; Shi, B. Y.; Davey, K.; Qiao, S. Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 2719–2730.

[70]

Chen, H.; Liu, J. W.; Wu, X. X.; Ye, C. Y.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. Pt-Co electrocatalysts: Syntheses, morphologies, and applications. Small 2022, 18, 2204100.

[71]

Sun, W.; Ma, C. L.; Tian, X. L.; Liao, J. J.; Yang, J.; Ge, C. J.; Huang, W. W. An amorphous lanthanum-iridium solid solution with an open structure for efficient water splitting. J. Mater. Chem. A 2020, 8, 12518–12525.

[72]

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

[73]

Xie, J. Y.; Zhang, X. Y.; Yu, N.; Luan, R. N.; Zhang, D. Z.; Zeng, J. B.; Chai, Y. M.; Dong, B. Accelerating Fe sites saturation coverage through Bi-metal dynamic balances on double-layer hollow MOF nanocages for oxygen evolution. Mater. Today Phys. 2022, 27, 100778.

[74]

Zhu, J. Y.; Xue, Q.; Xue, Y. Y.; Ding, Y.; Li, F. M.; Jin, P. J.; Chen, P.; Chen, Y. Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions. ACS Appl. Mater. Interfaces 2020, 12, 14064–14070.

[75]

Wei, Y. C.; Zheng, Y.; Hu, Y.; Huang, B. L.; Sun, M. Z.; Da, P. F.; Xi, P. X.; Yan, C. H. Controlling the cation exsolution of perovskite to customize heterostructure active site for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 25638–25647.

[76]

Bak, J.; Yun, T. G.; An, J. S.; Bae, H. B.; Chung, S. Y. Comparison of Fe-enhanced oxygen evolution electrocatalysis in amorphous and crystalline nickel oxides to evaluate the structural contribution. Energy Environ. Sci. 2022, 15, 610–620.

[77]

Wang, M.; Zhu, W. X.; Ma, M. J.; Fan, Z. L.; Yang, J. J.; Liao, F.; Shao, M. W. Lattice strain enhances the activity of Ir-IrO2/C for acidic oxygen evolution reaction. ChemElectroChem 2022, 9, e202200732.

[78]

Zhu, J. H.; Wei, M.; Meng, Q. H.; Chen, Z. Y.; Fan, Y. P.; Hasan, S. W.; Zhang, X. R.; Lyu, D. D.; Tian, Z. Q.; Shen, P. K. Ultrathin-shell IrCo hollow nanospheres as highly efficient electrocatalysts towards the oxygen evolution reaction in acidic media. Nanoscale 2020, 12, 24070–24078.

[79]

Fan, Z. L.; Ji, Y. J.; Shao, Q.; Geng, S. Z.; Zhu, W. X.; Liu, Y.; Liao, F.; Hu, Z. W.; Chang, Y. C.; Pao, C. W. et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. Joule 2021, 5, 3221–3234.

[80]

Li, J. X.; Wang, S. L.; Sun, S. J.; Wu, X.; Zhang, B. G.; Feng, L. G. A review of hetero-structured Ni-based active catalysts for urea electrolysis. J. Mater. Chem. A 2022, 10, 9308–9326.

[81]

Bao, Y. F.; Zha, M.; Sun, P. L.; Hu, G. Z.; Feng, L. G. PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 2021, 59, 748–754.

[82]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[83]

Fu, L. H.; Cheng, G. Z.; Luo, W. Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting. J. Mater. Chem. A 2017, 5, 24836–24841.

[84]

Guan, Y.; Li, N.; He, J.; Li, Y. L.; Zhang, L.; Zhang, Q. L.; Ren, X. Z.; He, C. X.; Zheng, L. R.; Sun, X. L. Tuning and understanding the electronic effect of Co-Mo-O sites in bifunctional electrocatalysts for ultralong-lasting rechargeable zinc-air batteries. J. Mater. Chem. A 2021, 9, 21716–21722.

[85]

Fang, B.; Liu, Z.; Bao, Y. F.; Feng, L. G. Unstable Ni leaching in MOF-derived PtNi-C catalyst with improved performance for alcohols fuel electro-oxidation. Chin. Chem. Lett. 2020, 31, 2259–2262.

[86]

He, J.; Fu, G.; Zhang, J. X.; Xu, P.; Sun, J. M. Multistage electron distribution engineering of iridium oxide by codoping W and Sn for enhanced acidic water oxidation electrocatalysis. Small 2022, 18, 2203365.

[87]

Chang, C. F.; Xie, Y. H.; Luo, F.; Zhou, S. W.; Yang, Z. H. Weakening s–d orbital hybridization of metallic iridium by tungsten atoms for acidic water splitting. Appl. Catal. A: Gen. 2023, 649, 118941.

[88]

Gou, W. Y.; Xia, Z. M.; Tan, X. H.; Xue, Q. Y.; Ye, F.; Dai, S.; Zhang, M. K.; Si, R.; Zou, Y.; Ma, Y. Y. et al. Highly active and stable amorphous IrOx/CeO2 nanowires for acidic oxygen evolution. Nano Energy 2022, 104, 107960.

[89]

Hou, L. Q.; Jang, H.; Liu, H. H.; Li, Z. J.; Kim, M. G.; Qin, Q.; Liu, X. E. Synergistic effect of electronic particle-support interactions on the Ir-based multiheterostructure for acidic water oxidation. ACS Sustain. Chem. Eng. 2022, 10, 15950–15957.

[90]

Pittkowski, R. K.; Abbott, D. F.; Nebel, R.; Divanis, S.; Fabbri, E.; Castelli, I. E.; Schmidt, T. J.; Rossmeisl, J.; Krtil, P. Synergistic effects in oxygen evolution activity of mixed iridium-ruthenium pyrochlores. Electrochim. Acta 2021, 366, 137327.

[91]

He, R. Z.; Wang, C. Y.; Feng, L. G. Amorphous FeCoNi-S as efficient bifunctional electrocatalysts for overall water splitting reaction. Chin. Chem. Lett. 2023, 34, 107241.

[92]

Zhou, Y.; Wang, Q. W.; Tian, X. L.; Chang, J. F.; Feng, L. G. Electron-enriched Pt induced by CoSe2 promoted bifunctional catalytic ability for low carbon alcohol fuel electro-reforming of hydrogen evolution. J. Energy Chem. 2022, 75, 46–54.

[93]

Zhou, Y.; Liu, D. Y.; Qiao, W.; Liu, Z.; Yang, J.; Feng, L. Ternary synergistic catalyst system of Pt-Cu-Mo2C with high activity and durability for alcohol oxidation. Mater. Today Phys. 2021, 17, 100357.

[94]

Wang, S. L.; Zhu, J. Y.; Wu, X.; Feng, L. G. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 2022, 33, 1105–1109.

[95]

Zhou, Y.; Kuang, Y. B.; Hu, G. Z.; Wang, X. Z.; Feng, L. G. An effective Pt-CoTe/NC catalyst of bifunctional methanol electrolysis for hydrogen generation. Mater. Today Phys. 2022, 27, 100831.

[96]

Gu, X. C.; Ji, Y. G.; Tian, J. Q.; Wu, X.; Feng, L. G. Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131576.

[97]

Liu, H.; Liu, Z.; Wang, F. L.; Feng, L. G. Efficient catalysis of N doped NiS/NiS2 heterogeneous structure. Chem. Eng. J. 2020, 397, 125507.

[98]

Gao, W. L.; Xu, Q. L.; Wang, Z. Y.; Wang, M.; Ren, X. N.; Yuan, G.; Wang, Q. F. Self-assembly of homointerface engineered IrCo0.14 bracelet-like nanorings as efficient and stable bifunctional catalysts for electrochemical water splitting in acidic media. Electrochim. Acta 2020, 337, 135738.

[99]

Li, Y.; Xing, L. M.; Yu, D. B.; Libanori, A.; Yang, K. R.; Sun, J. W.; Nashalian, A.; Zhu, Z. J.; Ma, Z. L.; Zhai, Y. L. et al. Hollow IrCo nanoparticles for high-performance overall water splitting in an acidic medium. ACS Appl. Nano Mater. 2020, 3, 11916–11922.

[100]
Chen, X. J. ; Liao, W. Y. ; Zhong, M. X. ; Chen, J. J. ; Yan, S. ; Li, W. M. ; Wang, C. ; Chen, W. ; Lu, X. F. Rational design of robust iridium-ceria oxide-carbon nanofibers to boost oxygen evolution reaction in both alkaline and acidic media. Nano Res., in press, https://doi.org/10.1007/s12274-022-5280-8.
[101]

Wang, S.; Lv, H.; Bi, S. H.; Li, T. Q.; Sun, Y. W.; Ji, W. X.; Feng, C.; Zhang, C. M. Defects tailoring IrO2@TiN1+x nano-heterojunctions for superior water oxidation activity and stability. Mater. Chem. Front. 2021, 5, 8047–8055.

[102]

Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.

[103]

He, R. Z.; Huang, X. Y.; Feng, L. G. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction. Energy Fuel. 2022, 36, 6675–6694.

[104]

Huang, G.; Xiao, Z. H.; Chen, R.; Wang, S. Y. Defect engineering of cobalt-based materials for electrocatalytic water splitting. ACS Sustain. Chem. Eng. 2018, 6, 15954–15969.

[105]

Yu, D.; Liu, Q.; Chen, B.; Zhao, Y. S.; Jia, P.; Sun, K. J.; Gao, F. M. Twin PdPtIr porous nanotubes as a dual-functional catalyst for oxygen reduction and evolution reactions. J. Mater. Chem. A 2022, 10, 11354–11362.

[106]

Kim, Y.; Jin, D.; Lee, C.; Lee, Y. Iridium-copper oxide nanotubes catalyzing pH-universal oxygen evolution reaction with highly improved activity and durability via elemental substitution. J. Alloys Compd. 2022, 909, 164813.

[107]

Yu, Z. P.; Xu, J. Y.; Li, Y. F.; Wei, B.; Zhang, N.; Li, Y.; Bondarchuk, O.; Miao, H. W.; Araujo, A.; Wang, Z. C. et al. Ultrafine oxygen-defective iridium oxide nanoclusters for efficient and durable water oxidation at high current densities in acidic media. J. Mater. Chem. A 2020, 8, 24743–24751.

[108]

Wei, Y.; Liao, A.; Zhou, Y.; Zou, Z. Enhancing the water splitting performance via decorating Fe2O3 nanoarrays with oxygen-vacancy-rich Ni1–xFexS electrocatalyst. Mater. Today Phys. 2021, 16, 100317.

[109]

Liu, Z.; Yu, X.; Yu, H. G.; Xue, H. G.; Feng, L. G. Nanostructured FeNi3 incorporated with carbon doped with multiple nonmetal elements for the oxygen evolution reaction. ChemSusChem 2018, 11, 2703–2709.

[110]

Zhong, L.; Bao, Y. F.; Feng, L. G. Fe-doping effect on CoTe catalyst with greatly boosted intrinsic activity for electrochemical oxygen evolution reaction. Electrochim. Acta 2019, 321, 134656.

[111]

Joo, J.; Park, Y.; Kim, J.; Kwon, T.; Jun, M.; Ahn, D.; Baik, H.; Jang, J. H.; Kim, J. Y.; Lee, K. Mn-dopant differentiating the Ru and Ir oxidation states in catalytic oxides toward durable oxygen evolution reaction in acidic electrolyte. Small Methods 2022, 6, 2101236.

[112]

Sun, X. C.; Liu, F.; Chen, X.; Li, C. C.; Yu, J.; Pan, M. Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium. Electrochim. Acta 2019, 307, 206–213.

[113]

Ma, C. L.; Yang, X. R.; Wang, Z. Q.; Sun, W.; Zhu, L.; Cao, L. M.; Gong, X. Q.; Yang, J. Achieving active and stable amorphous IrVOxOHy for water splitting. ACS Appl. Mater. Interfaces 2022, 14, 28706–28715.

[114]

Zhao, X. J.; Chang, Y.; He, X. L.; Zhang, H. Q.; Jia, J. C.; Jia, M. L. Understanding ultra-dispersed CeOx modified iridium clusters as bifunction electrocatalyst for high-efficiency water splitting in acid electrolytes. J. Rare Earths 2023, 41, 208–214.

[115]

Liu, H.; Zhang, Z.; Li, M. X.; Wang, Z. L.; Zhang, X. H.; Li, T. S.; Li, Y. P.; Tian, S. B.; Kuang, Y.; Sun, X. M. Iridium doped pyrochlore ruthenates for efficient and durable electrocatalytic oxygen evolution in acidic media. Small 2022, 18, 2202513.

[116]

Yin, Z. Z.; He, R. Z.; Zhang, Y. C.; Feng, L. G.; Wu, X.; Wågberg, T.; Hu, G. Z. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. J. Energy Chem. 2022, 69, 585–592.

[117]

Qiao, W.; Yang, X. D.; Li, M.; Feng, L. G. Hollow Pd/Te nanorods for the effective electrooxidation of methanol. Nanoscale 2021, 13, 6884–6889.

[118]

Jiang, K.; Luo, M.; Peng, M.; Yu, Y. Q.; Lu, Y. R.; Chan, T. S.; Liu, P.; de Groot, F. M. F.; Tan, Y. W. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat. Commun. 2020, 11, 2701.

[119]

Ding, X.; Li, M.; Jin, J. L.; Huang, X. B.; Wu, X.; Feng, L. G. Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. Chin. Chem. Lett. 2022, 33, 2687–2691.

[120]

Bao, Y. F.; Feng, L. G. Formic acid electro-oxidation catalyzed by PdNi/graphene aerogel. Acta Phys. Chim. Sin. 2020, 37, 2008031.

[121]

Moriau, L.; Koderman Podboršek, G.; Surca, A. K.; Semsari Parpari, S.; Šala, M.; Petek, U.; Bele, M.; Jovanovič, P.; Genorio, B.; Hodnik, N. Enhancing iridium nanoparticles’ oxygen evolution reaction activity and stability by adjusting the coverage of titanium oxynitride flakes on reduced graphene oxide nanoribbons’ support. Adv. Mater. Interfaces 2021, 8, 2100900.

[122]

Li, G. Q.; Jia, H. R.; Liu, H.; Yang, X.; Lin, M. C. Nanostructured IrOx supported on N-doped TiO2 as an efficient electrocatalyst towards acidic oxygen evolution reaction. RSC Adv. 2022, 12, 28929–28936.

[123]

Li, G. Q.; Xu, X. J.; Liu, H.; Yang, X.; Lin, M. C. Enhanced electrocatalytic performance of IrOx by employing F-doped TiO2 as support towards acidic oxygen evolution reaction. ChemCatChem 2022, 14, e202201039.

[124]

Zha, M.; Pei, C. G.; Wang, Q.; Hu, G. Z.; Feng, L. G. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid. J. Energy Chem. 2020, 47, 166–171.

[125]

Qiao, W.; Zha, M.; Yang, Y.; Hu, G. Z.; Feng, L. G. Pd17Se15 alloy on Se spheres with a high anti-poisoning ability for alcohol fuel electrooxidation. Chem. Commun. 2022, 58, 10651–10654.

[126]

Chatterjee, S.; Intikhab, S.; Profitt, L.; Li, Y. W.; Natu, V.; Gawas, R.; Snyder, J. Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions. J. Catal. 2021, 393, 303–312.

[127]

Jin, Z. Y.; Lv, J.; Jia, H. L.; Liu, W. H.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Sun, S. H. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

[128]

Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.

[129]

Wang, H. M.; Chen, Z. N.; Wu, D. S.; Cao, M. N.; Sun, F. F.; Zhang, H.; You, H. H.; Zhuang, W.; Cao, R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core–shell alloy structure. J. Am. Chem. Soc. 2021, 143, 4639–4645.

[130]

Zhang, J. M.; Cao, X. L.; Jiang, Y. F.; Hung, S. F.; Liu, W.; Yang, H. B.; Xu, C. Q.; Li, D. S.; Zhang, T. Y.; Li, Y. J. et al. Surface enrichment of Ir on the IrRu alloy for efficient and stable water oxidation catalysis in acid. Chem. Sci. 2022, 13, 12114–12121.

[131]

Zhang, T.; Liao, S. A.; Dai, L. X.; Yu, J. W.; Zhu, W.; Zhang, Y. W. Ir-Pd nanoalloys with enhanced surface-microstructure-sensitive catalytic activity for oxygen evolution reaction in acidic and alkaline media. Sci. China Mater. 2018, 61, 926–938.

[132]

Joo, J.; Jin, H.; Oh, A.; Kim, B.; Lee, J.; Baik, H.; Joo, S. H.; Lee, K. An IrRu alloy nanocactus on Cu2–xS@IrSy as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. J. Mater. Chem. A 2018, 6, 16130–16138.

[133]

Hu, H.; Kazim, F. M. D.; Ye, Z. H.; Xie, Y. H.; Zhang, Q.; Qu, K. G.; Xu, J. X.; Cai, W. W.; Xiao, S. L.; Yang, Z. H. Electronically delocalized Ir enables efficient and stable acidic water splitting. J. Mater. Chem. A 2020, 8, 20168–20174.

[134]

Cai, Z. X.; Goou, H.; Ito, Y.; Tokunaga, T.; Miyauchi, M.; Abe, H.; Fujita, T. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem. Sci. 2021, 12, 11306–11315.

[135]

Zhou, L. M.; Liu, X.; Wang, K. K.; Zhao, X. H.; Pu, H. K.; Zhang, T.; Jia, J.; Dong, K. Y.; Deng, Y. J. One-pot synthesis of alloy Ir-Cu microspheres with excellent electro-catalytic activity toward oxygen evolution reaction under acidic conditions. Energ. Fuels 2020, 34, 9956–9962.

[136]

Ying, Y. F.; Godínez Salomón, J. F.; Lartundo-Rojas, L.; Moreno, A.; Meyer, R.; Damin, C. A.; Rhodes, C. P. Hydrous cobalt-iridium oxide two-dimensional nanoframes: Insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Adv. 2021, 3, 1976–1996.

[137]

Jin, H.; Hong, Y. J.; Yoon, J.; Oh, A.; Chaudhari, N. K.; Baik, H.; Joo, S. H.; Lee, K. Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis. Nano Energy 2017, 42, 17–25.

[138]

Lv, F.; Feng, J. R.; Wang, K.; Dou, Z. P.; Zhang, W. Y.; Zhou, J. H.; Yang, C.; Luo, M. C.; Yang, Y.; Li, Y. J. et al. Iridium-tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts. ACS Cent. Sci. 2018, 4, 1244–1252.

[139]

Zhao, Y.; Luo, M.; Chu, S. F.; Peng, M.; Liu, B. Y.; Wu, Q. L.; Liu, P.; de Groot, F. M. F.; Tan, Y. W. 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media. Nano Energy 2019, 59, 146–153.

[140]

Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

[141]

Zhu, H.; Zhu, Z. F.; Hao, J.; Sun, S. H.; Lu, S. L.; Wang, C.; Ma, P. M.; Dong, W. F.; Du, M. L. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chem. Eng. J. 2022, 431, 133251.

[142]

Yang, X. D.; Xue, J.; Feng, L. G. Pt nanoparticles anchored over Te nanorods as a novel and promising catalyst for methanol oxidation reaction. Chem. Commun. 2019, 55, 11247–11250.

[143]

Yin, L. S.; Yang, T.; Ding, X. R.; He, M. S.; Wei, W. X.; Yu, T. T.; Zhao, H. Synthesis of phosphorus-iridium nanocrystals and their superior electrocatalytic activity for oxygen evolution reaction. Electrochem. Commun. 2018, 94, 59–63.

[144]

Liu, M.; Liu, S. L.; Mao, Q. Q.; Yin, S. L.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Ultrafine ruthenium-iridium-tellurium nanotubes for boosting overall water splitting in acidic media. J. Mater. Chem. A 2022, 10, 2021–2026.

[145]

Wu, H. X.; Wang, Y. B.; Shi, Z. P.; Wang, X.; Yang, J. H.; Xiao, M. L.; Ge, J. J.; Xing, W.; Liu, C. P. Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. J. Mater. Chem. A 2022, 10, 13170–13189.

[146]

Lin, X. R.; Hu, Y. X.; Hu, K. L.; Lin, X.; Xie, G. Q.; Liu, X. J.; Reddy, K. M.; Qiu, H. J. Inhibited surface diffusion of high-entropy nano-alloys for the preparation of 3D nanoporous graphene with high amounts of single atom dopants. ACS Mater. Lett. 2022, 4, 978–986.

[147]

Wang, J.; Liao, T.; Wei, Z. Z.; Sun, J. T.; Guo, J. J.; Sun, Z. Q. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy. Small Methods 2021, 5, 2000988.

[148]

Tian, L.; Li, Z.; Xu, X. N.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470.

[149]

Choi, S.; Park, J.; Kabiraz, M. K.; Hong, Y.; Kwon, T.; Kim, T.; Oh, A.; Baik, H.; Lee, M.; Paek, S. M. et al. Pt dopant: Controlling the Ir oxidation states toward efficient and durable oxygen evolution reaction in acidic media. Adv. Funct. Mater. 2020, 30, 2003935.

[150]

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

[151]

Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.

[152]

Feng, L. G.; Ding, R. F.; Chen, Y. W.; Wang, J. W.; Xu, L. Zeolitic imidazolate framework-67 derived ultra-small CoP particles incorporated into N-doped carbon nanofiber as efficient bifunctional catalysts for oxygen reaction. J. Power Sources 2020, 452, 227837.

[153]

Cheng, Z. F.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction. Sci. China Mater. 2021, 64, 2958–2966.

[154]

Ghadge, S. D.; Velikokhatnyi, O. I.; Datta, M. K.; Shanthi, P. M.; Tan, S. S.; Damodaran, K.; Kumta, P. N. Experimental and theoretical validation of high efficiency and robust electrocatalytic response of one-dimensional (1D) (Mn, Ir)O2: 10F nanorods for the oxygen evolution reaction in PEM-based water electrolysis. ACS Catal. 2019, 9, 2134–2157.

[155]

Chen, H.; Shi, L.; Sun, K.; Zhang, K. X.; Liu, Q.; Ge, J. J.; Liang, X.; Tian, B. Y.; Huang, Y. L.; Shi, Z. P. et al. Protonated iridate nanosheets with a highly active and stable layered perovskite framework for acidic oxygen evolution. ACS Catal. 2022, 12, 8658–8666.

[156]

Luo, Q. X.; Lin, D.; Zhan, W. Q.; Zhang, W. Q.; Tang, L. L.; Luo, J. J.; Gao, Z.; Jiang, P.; Wang, M.; Hao, L. Y. et al. Hexagonal perovskite Ba0.9Sr0.1Co0.8Fe0.1Ir0.1O3–δ as an efficient electrocatalyst towards the oxygen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 7149–7158.

[157]

Wang, F. F.; Zhang, C.; Yang, H. Mixed B-site ruddlesden-popper phase Sr2(RuxIr1–x)O4 enables enhanced activity for oxygen evolution reaction. J. Energy Chem. 2022, 70, 623–629.

[158]

Edgington, J.; Schweitzer, N.; Alayoglu, S.; Seitz, L. C. Constant change: Exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid. J. Am. Chem. Soc. 2021, 143, 9961–9971.

[159]

Shin, S.; Kwon, T.; Kim, K.; Kim, M.; Kim, M. H.; Lee, Y. Single-phase perovskite SrIrO3 nanofibers as a highly efficient electrocatalyst for a pH-universal oxygen evolution reaction. ACS Appl. Energy Mater. 2022, 5, 6146–6154.

[160]

Retuerto, M.; Pascual, L.; Piqué, O.; Kayser, P.; Salam, M. A.; Mokhtar, M.; Alonso, J. A.; Peña, M.; Calle-Vallejo, F.; Rojas, S. How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites. J. Mater. Chem. A 2021, 9, 2980–2990.

[161]

Chen, Y. B.; Li, H. Y.; Wang, J. X.; Du, Y. H.; Xi, S. B.; Sun, Y. M.; Sherburne, M.; Ager III, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572.

[162]

Zhang, L. J.; Jang, H.; Li, Z. J.; Liu, H. H.; Kim, M. G.; Liu, X.; Cho, J. SrIrO3 modified with laminar Sr2IrO4 as a robust bifunctional electrocatalyst for overall water splitting in acidic media. Chem. Eng. J. 2021, 419, 129604.

[163]

Liang, X.; Shi, L.; Liu, Y. P.; Chen, H.; Si, R.; Yan, W. S.; Zhang, Q.; Li, G. D.; Yang, L.; Zou, X. X. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 7631–7635.

[164]

You, M. S.; Gui, L. Q.; Ma, X.; Wang, Z. B.; Xu, Y.; Zhang, J.; Sun, J.; He, B. B.; Zhao, L. Electronic tuning of SrIrO3 perovskite nanosheets by sulfur incorporation to induce highly efficient and long-lasting oxygen evolution in acidic media. Appl. Catal. B: Environ. 2021, 298, 120562.

[165]

Lebedev, D.; Povia, M.; Waltar, K.; Abdala, P. M.; Castelli, I. E.; Fabbri, E.; Blanco, M. V.; Fedorov, A.; Copéret, C.; Marzari, N. et al. Highly active and stable iridium pyrochlores for oxygen evolution reaction. Chem. Mater. 2017, 29, 5182–5191.

[166]

Zhu, L.; Ma, C. L.; Wang, Z. Q.; Gong, X. Q.; Cao, L. M.; Yang, J. Tuning the hybridization state of Ir-O to improve the OER activity and stability of iridium pyrochlore via Zn doping. Appl. Surf. Sci. 2022, 576, 151840.

[167]

Hubert, M. A.; Gallo, A.; Liu, Y. Z.; Valle, E.; Sanchez, J.; Sokaras, D.; Sinclair, R.; King, L. A.; Jaramillo, T. F. Characterization of a dynamic Y2Ir2O7 catalyst during the oxygen evolution reaction in acid. J. Phys. Chem. C 2022, 126, 1751–1760.

[168]

Shih, P. C.; Kim, J.; Sun, C. J.; Yang, H. Single-phase pyrochlore Y2Ir2O7 electrocatalyst on the activity of oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 3992–3998.

[169]

Abbott, D. F.; Pittkowski, R. K.; Macounová, K.; Nebel, R.; Marelli, E.; Fabbri, E.; Castelli, I. E.; Krtil, P.; Schmidt, T. J. Design and synthesis of Ir/Ru pyrochlore catalysts for the oxygen evolution reaction based on their bulk thermodynamic properties. ACS Appl. Mater. Interfaces 2019, 11, 37748–37760.

[170]

Shang, C. Y.; Cao, C.; Yu, D. Y.; Yan, Y.; Lin, Y. T.; Li, H. L.; Zheng, T. T.; Yan, X. P.; Yu, W. C.; Zhou, S. M. et al. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation. Adv. Mater. 2019, 31, 1805104.

[171]

Wang, S. L.; Zhao, L. Y.; Li, J. X.; Tian, X. L.; Wu, X.; Feng, L. G. High valence state of Ni and Mo synergism in NiS2–MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. J. Energy Chem. 2022, 66, 483–492.

[172]

Li, M.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 19–24.

[173]

Li, J. X.; Feng, L. G. Surface structure engineering of FeNi-based pre-catalyst for oxygen evolution reaction: A mini review. J. Electrochem. 2022, 28, 2214001.

[174]

Du, Y. M.; Li, B.; Xu, G. R.; Wang, L. Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting. InfoMat 2023, 5, e12377.

[175]

Chen, P. C.; Li, M. F.; Jin, J. B.; Yu, S.; Chen, S. P.; Chen, C. B.; Salmeron, M.; Yang, P. D. Heterostructured Au-Ir catalysts for enhanced oxygen evolution reaction. ACS Mater. Lett. 2021, 3, 1440–1447.

[176]

Lee, S.; Lee, Y. J.; Lee, G.; Soon, A. Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction. Nat. Commun. 2022, 13, 3171.

[177]

Zhao, R.; Wang, Z. Y.; Xu, Q. L.; Niu, X. P.; Han, Y. X.; Qin, Y.; Wang, Q. F. Self-supported amorphous iridium oxide catalysts for highly efficient and durable oxygen evolution reaction in acidic media. Electrochim. Acta 2021, 391, 138955.

[178]

Sun, J. Y. ; Zhao, R. ; Niu, X. P. ; Xu, M. ; Xu, Z. H. ; Qin, Y. ; Zhao, W. L. ; Yang, X. Y. ; Han, Y. X. ; Wang, Q. F. In-situ reconstructed hollow iridium-cobalt oxide nanosphere for boosting electrocatalytic oxygen evolution in acid. Electrochim. Acta 2022, 432, 141199.

[179]

Xie, Y. H.; Yu, X. X.; Li, X. W.; Long, X.; Chang, C. F.; Yang, Z. H. Stable and high-performance Ir electrocatalyst with boosted utilization efficiency in acidic overall water splitting. Chem. Eng. J. 2021, 424, 130337.

[180]

Liu, Z.; Yu, H. G.; Dong, B. X.; Yu, X.; Feng, L. G. Electrochemical oxygen evolution reaction efficiently boosted by thermal-driving core–shell structure formation in nanostructured FeNi/S, N-doped carbon hybrid catalyst. Nanoscale 2018, 10, 16911–16918.

[181]

Chen, L. W.; He, F. X.; Shao, R. Y.; Yan, Q. Q.; Yin, P.; Zeng, W. J.; Zuo, M.; He, L. X.; Liang, H. W. Intermetallic IrGa-IrOx core–shell electrocatalysts for oxygen evolution. Nano Res. 2022, 15, 1853–1860.

[182]

Zhang, J.; Chen, Z. L.; Liu, C.; Zhao, J.; Liu, S. L.; Rao, D. W.; Nie, A. M.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Hierarchical iridium-based multimetallic alloy with double-core–shell architecture for efficient overall water splitting. Sci. China Mater. 2020, 63, 249–257.

[183]

Tackett, B. M.; Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Kuttiyiel, K. A.; Wu, Q. Y.; Chen, J. G. Reducing iridium loading in oxygen evolution reaction electrocatalysts using core–shell particles with nitride cores. ACS Catal. 2018, 8, 2615–2621.

[184]

Zhu, J. W.; Lyu, Z. H.; Chen, Z. T.; Xie, M. H.; Chi, M. F.; Jin, W. Q.; Xia, Y. N. Facile synthesis and characterization of Pd@IrnL (n = 1–4) core–shell nanocubes for highly efficient oxygen evolution in acidic media. Chem. Mater. 2019, 31, 5867–5875.

[185]

Huang, J. H.; Scott, S. B.; Chorkendorff, I.; Wen, Z. H. Online electrochemistry-mass spectrometry evaluation of the acidic oxygen evolution reaction at supported catalysts. ACS Catal. 2021, 11, 12745–12753.

[186]

Sun, J. Q.; Lowe, S. E.; Zhang, L. J.; Wang, Y. Z.; Pang, K. L.; Wang, Y.; Zhong, Y. L.; Liu, P. R.; Zhao, K.; Tang, Z. Y. et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511–16515.

[187]

Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Prato, M.; Martín-García, B.; Brescia, R.; Bonaccorso, F. Carbon nanotube-supported MoSe2 holey flake: Mo2C ball hybrids for bifunctional pH-universal water splitting. ACS Nano 2019, 13, 3162–3176.

[188]

Qiao, W.; Huang, X. Y.; Feng, L. G. Advances of PtRu-based electrocatalysts for methanol oxidation. Chin. J. Struct. Chem. 2022, 41, 2207016.

[189]

Ge, R. X.; Li, L.; Su, J. W.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energy Mater. 2019, 9, 1901313.

[190]

Gao, J. J.; Tao, H. B.; Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2021, 33, 2003786.

[191]

Wang, J.; Kim, J.; Choi, S.; Wang, H. S.; Lim, J. A review of carbon-supported nonprecious metals as energy-related electrocatalysts. Small Methods 2020, 4, 2000621.

[192]

Murthy, A. P.; Madhavan, J.; Murugan, K. Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J. Power Sources 2018, 398, 9–26.

[193]

Han, H.; Kim, I.; Park, S. Thermally templated cobalt oxide nanobubbles on crumpled graphene sheets: A promising non-precious metal catalysts for acidic oxygen evolution. Electrochim. Acta 2021, 382, 138277.

[194]

Lee, J.; Kim, I.; Park, S. Boosting stability and activity of oxygen evolution catalyst in acidic medium: Bimetallic Ir-Fe oxides on reduced graphene oxide prepared through ultrasonic spray pyrolysis. ChemCatChem 2019, 11, 2615–2623.

[195]

Roy, S. B.; Akbar, K.; Jeon, J. H.; Jerng, S. K.; Truong, L.; Kim, K.; Yi, Y.; Chun, S. H. Iridium on vertical graphene as an all-round catalyst for robust water splitting reactions. J. Mater. Chem. A 2019, 7, 20590–20596.

[196]

Mamtani, K.; Jain, D.; Dogu, D.; Gustin, V.; Gunduz, S.; Co, A. C.; Ozkan, U. S. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media. Appl. Catal. B: Environ. 2018, 220, 88–97.

[197]

Fang, B.; Feng, L. G. PtCo-NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Phys. Chim. Sin. 2020, 36, 1905023.

[198]

Yu, X.; Pei, C. G.; Feng, L. G. Surface modulated hierarchical graphene film via sulfur and phosphorus dual-doping for high performance flexible supercapacitors. Chin. Chem. Lett. 2019, 30, 1121–1125.

[199]

Lu, Y.; Zhang, H.; Ang, E. H.; Nie, Z.; Liu, H.; Du, Y.; Han, C.; Zhu, J.; Huang, W. In-situ self-catalyzed growth of bimetallic nanoparticles/carbon nanotubes: A flexible binder-free electrocatalyst for high-performance oxygen evolution reaction. Mater. Today Phys. 2021, 16, 100303.

[200]

Wu, X. J.; Feng, B. M.; Li, W.; Niu, Y. L.; Yu, Y. N.; Lu, S. Y.; Zhong, C. Y.; Liu, P. Y.; Tian, Z. Q.; Chen, L. et al. Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media. Nano Energy 2019, 62, 117–126.

[201]

Yi, L. Y.; Feng, B. M.; Chen, N.; Li, W.; Li, J. Y.; Fang, C. X.; Yao, Y. X.; Hu, W. H. Electronic interaction boosted electrocatalysis of iridium nanoparticles on nitrogen-doped graphene for efficient overall water splitting in acidic and alkaline media. Chem. Eng. J. 2021, 415, 129034.

[202]

Lei, C. J.; Chen, H. Q.; Cao, J. H.; Yang, J.; Qiu, M.; Xia, Y.; Yuan, C.; Yang, B.; Li, Z. J.; Zhang, X. W. et al. Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 2018, 8, 1801912.

[203]

Zhang, Z. Q.; Xia, Y.; Ye, M.; Wen, D. F.; Zhang, W. T.; Peng, W. D.; Tian, L. H.; Hu, W. Low Ir-content Ir/Fe@NCNT bifunctional catalyst for efficient water splitting. Int. J. Hydrog. Energy 2022, 47, 13371–13385.

[204]

Akbayrak, M.; Önal, A. M. Metal oxides supported cobalt nanoparticles: Active electrocatalysts for oxygen evolution reaction. Electrochim. Acta 2021, 393, 139053.

[205]

Frisch, M.; Raza, M. H.; Ye, M. Y.; Sachse, R.; Paul, B.; Gunder, R.; Pinna, N.; Kraehnert, R. ALD-coated mesoporous iridium-titanium mixed oxides: Maximizing iridium utilization for an outstanding OER performance. Adv. Mater. Interfaces 2022, 9, 2102035.

[206]

Martínez-Séptimo, A.; Valenzuela, M. A.; Del Angel, P.; de G. González-Huerta, R. IrRuOx/TiO2 a stable electrocatalyst for the oxygen evolution reaction in acidic media. Int. J. Hydrog. Energy 2021, 46, 25918–25928.

[207]

Jang, H.; Lee, J. H.; Lee, J. R.; Kim, T. W. Metal-support interaction can deactivate IrOx/Sb: SnO2 OER catalysts in polyol process. ACS Appl. Energy Mater. 2022, 5, 9297–9302.

[208]

Hartig-Weiss, A.; Miller, M.; Beyer, H.; Schmitt, A.; Siebel, A.; Freiberg, A. T. S.; Gasteiger, H. A.; El-Sayed, H. A. Iridium oxide catalyst supported on antimony-doped tin oxide for high oxygen evolution reaction activity in acidic media. ACS Appl. Nano Mater. 2020, 3, 2185–2196.

[209]

Zaman, S.; Wang, M.; Liu, H. J.; Sun, F. M.; Yu, Y.; Shui, J. L.; Chen, M.; Wang, H. J. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends Chem. 2022, 4, 886–906.

[210]

Li, R. Z.; Luo, L.; Ma, X. L.; Wu, W. L.; Wang, M. L.; Zeng, J. Single atoms supported on metal oxides for energy catalysis. J. Mater. Chem. A 2022, 10, 5717–5742.

[211]

Boshnakova, I.; Lefterova, E.; Slavcheva, E. Investigation of montmorillonite as carrier for OER. Int. J. Hydrog. Energy 2018, 43, 16897–16904.

[212]

Kim, I. G.; Lim, A.; Jang, J. H.; Lee, K. Y.; Nah, I. W.; Park, S. Leveraging metal alloy-hybrid support interaction to enhance oxygen evolution kinetics and stability in proton exchange membrane water electrolyzers. J. Power Sources 2021, 501, 230002.

[213]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, 9120029.

[214]

Xu, J. Y.; Lian, Z.; Wei, B.; Li, Y.; Bondarchuk, O.; Zhang, N.; Yu, Z. P.; Araujo, A.; Amorim, I.; Wang, Z. C. et al. Strong electronic coupling between ultrafine iridium-ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media. ACS Catal. 2020, 10, 3571–3579.

[215]

Zhang, K. K.; Mai, W. S.; Li, J.; Wang, H.; Li, G. Q.; Hu, W. Highly scattered Ir oxides on TiN as an efficient oxygen evolution reaction electrocatalyst in acidic media. J. Mater. Sci. 2020, 55, 3507–3520.

[216]

Zhu, Z. L.; Xu, C. X.; Wang, Y. C.; Wang, L.; Chang, Z.; Fang, Z. W.; Liu, X. T.; Cheng, J. G. The high performance NiFe layered double hydroxides@Ti3C2Tx/reduced graphene oxide hybrid catalyst for oxygen evolution reaction. J. Alloys Compd. 2022, 894, 162393.

[217]

Zhang, C. Q.; Kong, F. T.; Qiao, Y.; Zhao, Q. B.; Kong, A. G.; Shan, Y. K. 3D graphene-carbon nanotube hybrid supported coupled Co-MnO nanoparticles as highly efficient bifunctional electrocatalyst for rechargeable Zn-air batteries. Chem. Asian J. 2020, 15, 3535–3541.

[218]

Liu, Y. Y.; Wang, Y. H.; Zhao, S. L.; Tang, Z. Y. Metal-organic framework-based nanomaterials for electrocatalytic oxygen evolution. Small Methods 2022, 6, 2200773.

[219]

Sun, W.; Tian, X. L.; Liao, J. J.; Deng, H.; Ma, C. L.; Ge, C. J.; Yang, J.; Huang, W. W. Assembly of a highly active iridium-based oxide oxygen evolution reaction catalyst by using metal-organic framework self-dissolution. ACS Appl. Mater. Interfaces 2020, 12, 29414–29423.

[220]

Xu, J. Y.; Li, J. J.; Lian, Z.; Araujo, A.; Li, Y.; Wei, B.; Yu, Z. P.; Bondarchuk, O.; Amorim, I.; Tileli, V. et al. Atomic-step enriched ruthenium-iridium nanocrystals anchored homogeneously on MOF-derived support for efficient and stable oxygen evolution in acidic and neutral media. ACS Catal. 2021, 11, 3402–3413.

[221]

Chen, X.; Xu, M. Y.; Li, S.; Li, C. C.; Sun, X. C.; Mu, S. C.; Yu, J. Ultrafine IrNi bimetals encapsulated in zeolitic imidazolate frameworks-derived porous N-doped carbon for boosting oxygen evolution in both alkaline and acidic electrolytes. Adv. Mater. Interfaces 2020, 7, 2001145.

[222]

Ismail, N.; Qin, F. J.; Fang, C. H.; Liu, D.; Liu, B. H.; Liu, X. Y.; Wu, Z. L.; Chen, Z.; Chen, W. X. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2, e106.

[223]

Rong, C. L.; Shen, X. J.; Wang, Y.; Thomsen, L.; Zhao, T. W.; Li, Y. B.; Lu, X. Y.; Amal, R.; Zhao, C. Electronic structure engineering of single-atom Ru sites via Co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 2022, 34, 2110103.

[224]

Luo, F.; Hu, H.; Zhao, X.; Yang, Z. H.; Zhang, Q.; Xu, J. X.; Kaneko, T.; Yoshida, Y.; Zhu, C. Z.; Cai, W. W. Robust and stable acidic overall water splitting on Ir single atoms. Nano Lett. 2020, 20, 2120–2128.

[225]

Yin, J.; Jin, J.; Lu, M.; Huang, B. L.; Zhang, H.; Peng, Y.; Xi, P. X.; Yan, C. H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 2020, 142, 18378–18386.

[226]

Feng, Q.; Zhang, Z.; Huang, H. H.; Yao, K. G.; Fan, J. T.; Zeng, L.; Williams, M. C.; Li, H.; Wang, H. J. An effective strategy to tune the oxygen vacancy of pyrochlore oxides for electrochemical energy storage and conversion systems. Chem. Eng. J. 2020, 395, 124428.

[227]

Kim, H.; Kim, J.; Kim, J.; Han, G. H.; Guo, W. W.; Hong, S.; Park, H. S.; Jang, H. W.; Kim, S. Y.; Ahn, S. H. Dendritic gold-supported iridium/iridium oxide ultra-low loading electrodes for high-performance proton exchange membrane water electrolyzer. Appl. Catal. B: Environ. 2021, 283, 119596.

[228]

Fathi Tovini, M.; Damjanovic, A. M.; El-Sayed, H. A.; Speder, J.; Eickes, C.; Suchsland, J. P.; Ghielmi, A.; Gasteiger, H. A. Degradation mechanism of an IrO2 anode Co-catalyst for cell voltage reversal mitigation under transient operation conditions of a PEM fuel cell. J. Electrochem. Soc. 2021, 168, 064521.

[229]

Chen, Y. H.; Liu, C. F.; Xu, J. C.; Xia, C. F.; Wang, P.; Xia, B. Y.; Yan, Y.; Wang, X. Y. Key components and design strategy for a proton exchange membrane water electrolyzer. Small Structures 2022, 2200130.

[230]

Yeo, K. R.; Lee, K. S.; Kim, H.; Lee, J.; Kim, S. K. A highly active and stable 3D dandelion spore-structured self-supporting Ir-based electrocatalyst for proton exchange membrane water electrolysis fabricated using structural reconstruction. Energy Environ. Sci. 2022, 15, 3449–3461.

[231]

Shi, Z. P.; Li, J.; Jiang, J. D.; Wang, Y. B.; Wang, X.; Li, Y.; Yang, L. T.; Chu, Y. Y.; Bai, J. S.; Yang, J. H. et al. Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5–x catalyst/support interfaces. Angew. Chem., Int. Ed. 2022, 61, e202212341.

[232]

Lee, S. W.; Baik, C.; Kim, D. H.; Pak, C. Control of Ir oxidation states to overcome the trade-off between activity and stability for the oxygen evolution reaction. J. Power. Sources 2021, 493, 229689.

Nano Research Energy
Article number: e9120056
Cite this article:
Wang C, Schechter A, Feng L. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Research Energy, 2023, 2: e9120056. https://doi.org/10.26599/NRE.2023.9120056

8693

Views

2415

Downloads

91

Crossref

92

Scopus

Altmetrics

Received: 09 January 2023
Revised: 07 February 2023
Accepted: 11 February 2023
Published: 10 March 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return