AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Comment | Open Access

Long-range ordered porous carbon: A new carbon constructed by connecting C60 cages

Yibing Yang1Meiling Tang1Zhenyu Zhang2Shaozhuan Huang1Shuilin Wu1( )
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
Renewable Energy Group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
Show Author Information

References

[1]

Hirsch, A. The era of carbon allotropes. Nat. Mater. 2010, 9, 868–871.

[2]

Wang, D. B.; Fernandez-Martinez, A. Order from disorder. Science 2012, 337, 812–813.

[3]

Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.

[4]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[5]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[6]

Forse, A. C.; Merlet, C.; Allan, P. K.; Humphreys, E. K.; Griffin, J. M.; Aslan, M.; Zeiger, M.; Presser, V.; Gogotsi, Y.; Grey, C. P. New insights into the structure of nanoporous carbons from NMR, Raman, and Pair distribution function analysis. Chem. Mater. 2015, 27, 6848–6857.

[7]

Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744–4822.

[8]

Hou, L. X.; Cui, X. P.; Guan, B.; Wang, S. Z.; Li, R. A.; Liu, Y. Q.; Zhu, D. B.; Zheng, J. Synthesis of a monolayer fullerene network. Nature 2022, 606, 507–510.

[9]

Meirzadeh, E.; Evans, A. M.; Rezaee, M.; Milich, M.; Dionne, C. J.; Darlington, T. P.; Bao, S. T.; Bartholomew, A. K.; Handa, T.; Rizzo, D. J. et al. A few-layer covalent network of fullerenes. Nature 2023, 613, 71–76.

[10]

Rao, A. M.; Zhou, P.; Wang, K. A.; Hager, G. T.; Holden, J. M.; Wang, Y.; Lee, W. T.; Bi, X. X.; Eklund, P. C.; Cornett, D. S. et al. Photoinduced polymerization of solid C60 films. Science 1993, 259, 955–957.

[11]

Núñez-Regueiro, M.; Marques, L.; Hodeau, J. L.; Béthoux, O.; Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 1995, 74, 278–281.

[12]

Shang, Y. C.; Liu, Z. D.; Dong, J. J.; Yao, M. G.; Yang, Z. X.; Li, Q. J.; Zhai, C. G.; Shen, F. R.; Hou, X. Y.; Wang, L. et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 2021, 599, 599–604.

[13]

Tan, Z. Q.; Ni, K.; Chen, G. X.; Zeng, W. C.; Tao, Z. C.; Ikram, M.; Zhang, Q. B.; Wang, H. J.; Sun, L. T.; Zhu, X. J. et al. Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv. Mater. 2017, 29, 1603414.

[14]

Chen, G. X.; Wu, S. L.; Hui, L. W.; Zhao, Y.; Ye, J. L.; Tan, Z. Q.; Zeng, W. C.; Tao, Z. C.; Yang, L. H.; Zhu, Y. W. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Sci. Rep. 2016, 6, 19028.

[15]

Wang, L.; Liu, B. B.; Li, H.; Yang, W. G.; Ding, Y.; Sinogeikin, S. V.; Meng, Y.; Liu, Z. X.; Zeng, X. C.; Mao, W. L. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 2012, 337, 825–828.

[16]

Pan, F.; Ni, K.; Xu, T.; Chen, H. C.; Wang, Y. S.; Gong, K.; Liu, C.; Li, X.; Lin, M. L.; Li, S. Y. et al. Long-range ordered porous carbons produced from C60. Nature 2023, 614, 95–101.

[17]

Ni, K.; Pan, F.; Zhu, Y. W. Structural evolution of C60 molecular crystal predicted by neural network potential. Adv. Funct. Mater. 2022, 32, 2203894.

[18]

Hiura, H.; Miyazaki, T.; Kanayama, T. Formation of metal-encapsulating Si cage clusters. Phys. Rev. Lett. 2001, 86, 1733–1736.

Nano Research Energy
Article number: e9120065
Cite this article:
Yang Y, Tang M, Zhang Z, et al. Long-range ordered porous carbon: A new carbon constructed by connecting C60 cages. Nano Research Energy, 2023, 2: e9120065. https://doi.org/10.26599/NRE.2023.9120065

1156

Views

199

Downloads

3

Crossref

3

Scopus

Altmetrics

Received: 18 February 2023
Revised: 03 March 2023
Accepted: 05 March 2023
Published: 21 March 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return