AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Realizing self-powered mechanical transmission control system via triboelectric nanogenerator and electrorheological fluid composed soft starter

Jianfeng Sun1,§Jiaqi Li1,§Yingzhou Huang1Song Qi2Jie Chen3( )Changsheng Wu4( )Hengyu Guo1( )
Department of Physics, Chongqing University, Chongqing 400044, China
Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore

§ Jianfeng Sun and Jiaqi Li contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, a newly soft starter based on the triboelectric nanogenerator (TENG) and electrorheological fluid (ERF) was proposed to realize a self-powered mechanical transmission system.

Abstract

Soft starters are effective devices used to provide overload protection for motors from large mechanical shocks during the start-up period. However, existing soft starters require additional power supplies, sensors, and complex control elements that pose serious challenges to the integration, versatility, and operability of mechanical transmission system. Herein, we propose a newly soft starter based on the triboelectric nanogenerator (TENG) and electrorheological fluid (ERF) to realize a self-powered mechanical transmission system. Both ERF’s rheological characteristic and the baffle structure play a role in the torque of device. Driven by TENG, the soft starter with optimized baffle achieves a 715% growth in transmission torque compared to that of the device without baffle. And a smooth start is obtained with transmission speeds ranging from 0% to 100%. In application demonstration, this triboelectric soft starter (TSS) has the capacity to gain a smooth operation of the high-speed motor. In contrast, the direct start generates an overshoot, leading to a break in the conveyor belt. The TSS designed in this work with the advantages of self-powered, highly integrated, easy to operate, and low cost, provides a prospective strategy for broadening the application of TENG in mechanical transmission systems.

Electronic Supplementary Material

Video
0066_ESM_Movie1.mp4
0066_ESM_Movie2.mp4
0066_ESM_Movie3.mp4
Download File(s)
0066_ESM.pdf (2 MB)

References

[1]

McElveen, R. F.; Toney, M. K. Starting high-inertia loads. IEEE Trans. Ind. Appl. 2001, 37, 137–144.

[2]

Zhang, P. J.; Lu, B.; Habetler, T. G. A remote and sensorless stator winding resistance estimation method for thermal protection of soft-starter-connected induction machines. IEEE Trans. Ind. Electron. 2008, 55, 3611–3618.

[3]

Fan, S. Q.; Xue, Z. M.; Guo, Z. Q.; Wang, Y.; Geng, L. VRSPV soft-start strategy and AICS technique for boost converters to improve the start-up performance. IEEE Trans. Power. Electron. 2016, 31, 3663–3672.

[4]

Zhang, G. B.; Wang, L.; Huang, Y. M.; Lu, Y.; Zhu, Y. S. Half-soft starting control of switched reluctance motor using discrete position signal processing. Cluster Comput. 2017, 20, 3185–3198.

[5]

Yuan, J. X.; Wang, C. S.; Yin, S.; Wei, L. L.; Muramatsu, K.; Chen, B. C. Coupled autotransformer and magnetic-control soft-start method for super-large-capacity high-voltage motors. High Volt. 2020, 5, 38–45.

[6]

Xie, Y. P.; Yu, M.; Qu, H.; Fu, J. Carbon black reinforced magnetorheological gel enabled high-performance magneto-resistor for motor soft start-up. Smart Mater. Struct. 2019, 28, 125019.

[7]

Sheng, P.; Wen, W. J. Electrorheological fluids: Mechanisms, dynamics, and microfluidics applications. Annu. Rev. Fluid Mech. 2012, 44, 143–174.

[8]

Ma, H. R.; Wen, W. J.; Tam, W. Y.; Sheng, P. Dielectric electrorheological fluids: Theory and experiment. Adv. Phys. 2003, 52, 343–383.

[9]

Dong, Y. Z.; Seo, Y.; Choi, H. J. Recent development of electro-responsive smart electrorheological fluids. Soft Matter 2019, 15, 3473–3486.

[10]

Shen, R.; Wang, X. Z.; Lu, Y.; Wang, D.; Sun, G.; Cao, Z. X.; Lu, K. Q. Polar-molecule-dominated electrorheological fluids featuring high yield stresses. Adv. Mater. 2009, 21, 4631–4635.

[11]

Lee, S.; Lee, J.; Hwang, S. H.; Yun, J.; Jang, J. Enhanced electroresponsive performance of double-shell SiO2/TiO2 hollow nanoparticles. ACS Nano 2015, 9, 4939–4949.

[12]

Wu, J. H.; Zhang, L.; Xin, X.; Zhang, Y.; Wang, H.; Sun, A. H.; Cheng, Y. C.; Chen, X. D.; Xu, G. J. Electrorheological fluids with high shear stress based on wrinkly tin titanyl oxalate. ACS Appl. Mater. Interfaces 2018, 10, 6785–6792.

[13]

Qiu, Z. H.; Shen, R.; Huang, J.; Lu, K. Q.; Xiong, X. M. A giant electrorheological fluid with a long lifetime and good thermal stability based on TiO2 inlaid with nanocarbons. J. Mater. Chem. C 2019, 7, 5816–5820.

[14]

Wang, Z. L. On the expanded Maxwell’s equations for moving charged media system—General theory, mathematical solutions and applications in TENG. Mater. Today 2022, 52, 348–363.

[15]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[16]

Wang, J.; Wu, H. Y.; Wang, Z.; He, W. C.; Shan, C. C.; Fu, S. K.; Du, Y.; Liu, H.; Hu, C. G. An ultrafast self-polarization effect in barium titanate filled poly(vinylidene fluoride) composite film enabled by self-charge excitation triboelectric nanogenerator. Adv. Funct. Mater. 2022, 32, 2204322.

[17]

Wang, Z.; Tang, Q.; Shan, C. C.; Du, Y.; He, W. C.; Fu, S. K.; Li, G.; Liu, A. P.; Liu, W. L.; Hu, C. G. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy Environ. Sci. 2021, 14, 6627–6637.

[18]

Tang, Q.; Wang, Z.; Chang, W. X.; Sun, J. F.; He, W. C.; Zeng, Q. X.; Guo, H. Y.; Hu, C. G. Interface static friction enabled ultra-durable and high output sliding mode triboelectric nanogenerator. Adv. Funct. Mater. 2022, 32, 2202055.

[19]

Long, L.; Liu, W. L.; Wang, Z.; He, W. C.; Li, G.; Tang, Q.; Guo, H. Y.; Pu, X. J.; Liu, Y. K.; Hu, C. G. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 2021, 12, 4689.

[20]

Tang, Q.; Guo, H. Y.; Yan, P.; Hu, C. G. Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. EcoMat 2020, 2, e12060.

[21]

Chen, J.; Guo, H. Y.; Hu, C. G.; Wang, Z. L. Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition. Adv. Energy Mater. 2020, 10, 2000886.

[22]

Li, Q. Y.; Liu, W. L.; Yang, H. M.; He, W. C.; Long, L.; Wu, M. B.; Zhang, X. M.; Xi, Y.; Hu, C. G.; Wang, Z. L. Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 2021, 90, 106585.

[23]

Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

[24]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

[25]

Dong, K.; Wang, Z. L. Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J. Semicond. 2021, 42, 101601.

[26]

Dong, K.; Peng, X.; Cheng, R. W.; Wang, Z. L. Smart textile triboelectric nanogenerators: Prospective strategies for improving electricity output performance. Nanoenergy Adv. 2022, 2, 133–164.

[27]

Dong, K.; Hu, Y. F.; Yang, J.; Kim, S. W.; Hu, W. G.; Wang, Z. L. Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bull. 2021, 46, 512–521.

[28]

Zi, Y. L.; Wu, C. S.; Ding, W. B.; Wang, Z. L. Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 2017, 27, 1700049.

[29]

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

[30]

Lei, R.; Shi, Y. X.; Ding, Y. F.; Nie, J. H.; Li, S. Y.; Wang, F.; Zhai, H.; Chen, X. Y.; Wang, Z. L. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 2020, 13, 2178–2190.

[31]

Yao, S. C.; Zhao, X. Y.; Wang, X. Y.; Huang, T.; Ding, Y. M.; Zhang, J. M.; Zhang, Z. Y.; Wang, Z. L.; Li, L. L. Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy. Adv. Mater. 2022, 34, 2109568.

[32]

Yang, Y.; Luo, R. Z.; Chao, S. Y.; Xue, J. T.; Jiang, D. J.; Feng, Y. H.; Guo, X. D.; Luo, D.; Zhang, J. P.; Li, Z. et al. Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation. Nat. Commun. 2022, 13, 6908.

[33]

Liu, Z. R.; Nie, J. H.; Miao, B.; Li, J. D.; Cui, Y. B.; Wang, S.; Zhang, X. D.; Zhao, G. R.; Deng, Y. B.; Wu, Y. H. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 2019, 31, 1807795.

[34]

Conta, G.; Libanori, A.; Tat, T.; Chen, G. R.; Chen, J. Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 2021, 33, 2007502.

[35]

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

[36]

Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

[37]

Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

[38]

Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2021, 4, 147–153.

[39]

Cheng, J.; Ding, W. B.; Zi, Y. L.; Lu, Y. J.; Ji, L. H.; Liu, F.; Wu, C. S.; Wang, Z. L. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 2018, 9, 3733.

[40]

Gu, G. Q.; Han, C. B.; Lu, C. X.; He, C.; Jiang, T.; Gao, Z. L.; Li, C. J.; Wang, Z. L. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 2017, 11, 6211–6217.

[41]

Huo, Z. Y.; Kim, Y. J.; Suh, I. Y.; Lee, D. M.; Lee, J. H.; Du, Y.; Wang, S.; Yoon, H. J.; Kim, S. W. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nat. Commun. 2021, 12, 3693.

[42]

Wang, J. Q.; Meng, C. L.; Gu, Q.; Tseng, M. C.; Tang, S. T.; Kwok, H. S.; Cheng, J.; Zi, Y. L. Normally transparent tribo-induced smart window. ACS Nano 2020, 14, 3630–3639.

[43]

Liu, X.; Zhang, M. Y.; Yang, Z.; Wang, H.; Chen, J. Q.; Wang, Z. Z.; Lu, Y. J.; Chen, Y. B.; Ji, L. H.; Cheng, J. Alternating current electroluminescent device powered by triboelectric nanogenerator with capacitively driven circuit strategy. Adv. Funct. Mater. 2022, 32, 2106411.

[44]

Wang, H. Y.; Wang, J. Q.; Yao, K. M.; Fu, J. J.; Xia, X.; Zhang, R. R.; Li, J. Y.; Xu, G. Q.; Wang, L. Y.; Yang, J. C. et al. A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Sci. Adv. 2021, 7, eabi6751.

[45]

Sun, J. F.; Zhang, L. J.; Li, Z. J.; Tang, Q.; Chen, J.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y.; Wang, Z. L. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 2021, 33, 2102765.

[46]

Li, A. Y.; Zi, Y. L.; Guo, H. Y.; Wang, Z. L.; Fernández, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 2017, 12, 481–487.

[47]

Zhang, L. J.; Sun, J. F.; Fang, Y. R.; Huang, Y. Z.; Guo, H. Y.; Wang, Z. L. Tribo-electrophoresis preconcentration enhanced ultra-sensitive SERS detection. Nano Energy 2022, 98, 107239.

[48]

Nie, J. H.; Ren, Z. W.; Shao, J. J.; Deng, C. R.; Xu, L.; Chen, X. Y.; Li, M. C.; Wang, Z. L. Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique. ACS Nano 2018, 12, 1491–1499.

[49]

Sun, J. F.; Zhang, L. J.; Zhou, Y. H.; Li, Z. J.; Libanori, A.; Tang, Q.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y. et al. Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection. Mater. Today 2022, 58, 41–47.

[50]

Wen, W. J.; Huang, X. X.; Yang, S. H.; Lu, K. Q.; Sheng, P. The giant electrorheological effect in suspensions of nanoparticles. Nat. Mater. 2003, 2, 727–730.

Nano Research Energy
Pages e9120066-e9120066
Cite this article:
Sun J, Li J, Huang Y, et al. Realizing self-powered mechanical transmission control system via triboelectric nanogenerator and electrorheological fluid composed soft starter. Nano Research Energy, 2023, 2: e9120066. https://doi.org/10.26599/NRE.2023.9120066

2365

Views

308

Downloads

6

Crossref

6

Scopus

Altmetrics

Received: 20 February 2023
Revised: 09 March 2023
Accepted: 10 March 2023
Published: 23 April 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return