AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Highlight | Open Access

Beyond electrode materials structure design: Binders play a vital role for battery application of micro-size electroactive materials

Mingyue WangZhongchao BaiNana Wang( )
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
Show Author Information

Abstract

Micrometre-sized electroactive particles with high tapping density show significant potential for commercial application since they effectively alleviate low Coulombic efficiency and excessive solid electrolyte interphase (SEI) issues brought by nanostructures. Furthermore, optimizing the electrode architecture using novel design concepts can improve the energy density. Beyond the electrode material structure design strategy, binder plays a vital role in providing the mechanical stability and regulating the charge transport. This highlight presents the latest development to design high-capacity batteries by optimizing the binder structures in electrodes and emphasizes the significance of binder design for further commercial application.

References

[1]

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

[2]

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

[3]

Wang, N. N.; Zhang, X.; Ju, Z. Y.; Yu, X. W.; Wang, Y. X.; Du, Y.; Bai, Z. C.; Dou, S. X.; Yu, G. H. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 2021, 12, 4519.

[4]

Ju, Z. Y.; King, S. T.; Xu, X.; Zhang, X.; Raigama, K. U.; Takeuchi, K. J.; Marschilok, A. C.; Wang, L.; Takeuchi, E. S.; Yu, G. H. Vertically assembled nanosheet networks for high-density thick battery electrodes. Proc. Natl. Acad. Sci. USA 2022, 119, e2212777119.

[5]

Wang, M. Y.; Bai, Z. C.; Yang, T.; Nie, C. H.; Xu, X.; Wang, Y. X.; Yang, J.; Dou, S. X.; Wang, N. N. Advances in high sulfur loading cathodes for practical lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2201585.

[6]

Zhu, T. Y.; Sternlicht, H.; Ha, Y.; Fang, C.; Liu, D. Y.; Savitzky, B. H.; Zhao, X.; Lu, Y. Y.; Fu, Y. B.; Ophus, C. et al. Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries. Nat. Energy 2023, 8, 129–137.

[7]

Park, S. H.; King, P. J.; Tian, R. Y.; Boland, C. S.; Coelho, J.; Zhang, C. F.; McBean, P.; McEvoy, N.; Kremer, M. P.; Daly, D. et al. High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 2019, 4, 560–567.

[8]

Jin, B. Y.; Cui, Z. H.; Manthiram, A. In situ interweaved binder framework mitigating the structural and interphasial degradations of high-nickel cathodes in lithium-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202301241.

[9]

Ling, M.; Qiu, J. X.; Li, S.; Yan, C.; Kiefel, M. J.; Liu, G.; Zhang, S. Q. Multifunctional SA-PProDOT binder for lithium ion batteries. Nano Lett. 2015, 15, 4440–4447.

[10]

Yao, Q.; Zhu, Y. S.; Zheng, C.; Wang, N. N.; Wang, D. D.; Tian, F.; Bai, Z. C.; Yang, J.; Qian, Y. T.; Dou, S. X. Intermolecular cross-linking reinforces polymer binders for durable alloy-type anode materials of sodium-ion batteries. Adv. Energy Mater. 2023, 13, 2202939.

[11]

Gao, H. C.; Zhou, W. D.; Jang, J. H.; Goodenough, J. B. Cross-linked chitosan as a polymer network binder for an antimony anode in sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502130.

[12]

Wang, C. T.; Su, L.; Wang, N. N.; Lv, D.; Wang, D. D.; Yang, J.; Qian, Y. T. Unravelling binder chemistry in sodium/potassium ion batteries for superior electrochemical performances. J. Mater. Chem. A 2022, 10, 4060–4067.

[13]

Xia, J. L.; Lu, A. H.; Yu, X. F.; Li, W. C. Rational design of a trifunctional binder for hard carbon anodes showing high initial Coulombic efficiency and superior rate capability for sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2104137.

Nano Research Energy
Article number: e9120067
Cite this article:
Wang M, Bai Z, Wang N. Beyond electrode materials structure design: Binders play a vital role for battery application of micro-size electroactive materials. Nano Research Energy, 2023, 2: e9120067. https://doi.org/10.26599/NRE.2023.9120067

1805

Views

285

Downloads

2

Crossref

3

Scopus

Altmetrics

Received: 24 February 2023
Revised: 24 March 2023
Accepted: 24 March 2023
Published: 13 April 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return