Imposing phase engineering to porous materials is promising to realize outperforming electrocatalytic performances by taking advantages of the merits of porous nanoarchitecture and heterophase structure. In this work, amorphous/crystalline ruthenium oxide (RuO2) porous particles with rationally regulated heterophases are successfully prepared by integrating the phase engineering into the porous material synthesis. The resultant defect-rich amorphous/crystalline RuO2 porous particles exhibit excellent electrocatalytic performance toward the oxygen evolution reaction, achieving a low overpotential of 165 mV at a current density of 10 mA·cm−2 and a high mass activity up to 133.8 mA·cm−2 at a low overpotential of 200 mV. This work indicates that the synergistic effect of amorphous/crystalline heterophase and porous structural characteristics enables RuO2 to trigger a superior electrocatalytic activity.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.
Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492–517.
Cheng, Z. H.; Fu, Q.; Han, Q.; Xiao, Y. K.; Liang, Y.; Zhao, Y.; Qu, L. T. A type of 1 nm molybdenum carbide confined within carbon nanomesh as highly efficient bifunctional electrocatalyst. Adv. Funct. Mater. 2018, 28, 1705967.
Peng, W. F.; Deshmukh, A.; Chen, N.; Lv, Z. X.; Zhao, S. J.; Li, J.; Yan, B. M.; Gao, X.; Shang, L.; Gong, Y. T. et al. Deciphering the dynamic structure evolution of Fe- and Ni-codoped CoS2 for enhanced water oxidation. ACS Catal. 2022, 12, 3743–3751.
Chen, S. M.; Ma, L. T.; Huang, Z. D.; Liang, G. J.; Zhi, C. Y. In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts. Cell Rep. Phys. Sci. 2022, 3, 100729.
Cao, X. J.; Huo, J. J.; Li, L.; Qu, J. P.; Zhao, Y. F.; Chen, W. H.; Liu, C. T.; Liu, H.; Wang, G. X. Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions. Adv. Energy Mater. 2022, 12, 2202119.
Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.
Xie, M. W.; Xiong, X. L.; Yang, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. An Fe(TCNQ)2 nanowire array on Fe foil: An efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chem. Commun. 2018, 54, 2300–2303.
Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.
Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.
Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.
Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.
Chen, H.; Shi, L.; Liang, X.; Wang, L. N.; Asefa, T.; Zou, X. X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts. Angew. Chem., Int. Ed. 2020, 59, 19654–19658.
Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.
Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.
Yu, T. Q.; Xu, Q. L.; Qian, G. F.; Chen, J. L.; Zhang, H.; Luo, L.; Yin, S. B. Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustain. Chem. Eng. 2020, 8, 17520–17526.
Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.
Huang, H. W.; Kim, H.; Lee, A.; Kim, S.; Lim, W. G.; Park, C. Y.; Kim, S.; Kim, S. K.; Lee, J. Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy 2021, 88, 106276.
Choi, K. S.; McFarland, E. W.; Stucky, G. D. Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly. Adv. Mater. 2003, 15, 2018–2021.
Li, C. L.; Jiang, B.; Wang, Z. L.; Li, Y. Q.; Hossain, S. A.; Kim, J. H.; Takei, T.; Henzie, J.; Dag, Ö.; Bando, Y. et al. First synthesis of continuous mesoporous copper films with uniformly sized pores by electrochemical soft templating. Angew. Chem., Int. Ed. 2016, 55, 12746–12750.
Li, C. L.; Dag, Ö.; Dao, T. D.; Nagao, T.; Sakamoto, Y.; Kimura, T.; Terasaki, O.; Yamauchi, Y. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties. Nat. Commun. 2015, 6, 6608.
Jiang, B.; Li, C. L.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, S. A.; Islam, T.; Wood, K.; Henzie, J. et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 2017, 8, 15581.
Li, C. L.; Jiang, B.; Miyamoto, N.; Kim, J. H.; Malgras, V.; Yamauchi, Y. Surfactant-directed synthesis of mesoporous Pd films with perpendicular mesochannels as efficient electrocatalysts. J. Am. Chem. Soc. 2015, 137, 11558–11561.
Jo, C.; Hwang, J.; Lim, W. G.; Lim, J.; Hur, K.; Lee, J. Multiscale phase separations for hierarchically ordered macro/mesostructured metal oxides. Adv. Mater. 2018, 30, 1703829.
Du, D. W.; Geng, Q. H.; Ma, L.; Ren, S. Y.; Li, J. X.; Dong, W. K.; Hua, Q. F.; Fan, L. L.; Shao, R. W.; Wang, X. M. et al. Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation. Chem. Sci. 2022, 13, 3819–3825.
Li, J. X.; Yin, H. X.; Geng, Q. H.; Du, D. W.; Ma, L. A.; Fan, L. L.; Hua, Q. F.; Li, C. L. Nanoporous trimetallic PdCuAg alloys as efficient electrocatalysts by all-direction accessibility and synergetic effects. J. Mater. Chem. A 2022, 10, 6569–6575.
Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 2015, 137, 14834–14837.
McCoy, D. E.; Feo, T.; Harvey, T. A.; Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 2018, 9, 1.
Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.
Yonemoto, B. T.; Hutchings, G. S.; Jiao, F. A general synthetic approach for ordered mesoporous metal sulfides. J. Am. Chem. Soc. 2014, 136, 8895–8898.
He, R. Z.; Wang, C. Y.; Feng, L. G. Amorphous FeCoNi-S as efficient bifunctional electrocatalysts for overall water splitting reaction. Chin. Chem. Lett. 2023, 34, 107241.
Wang, X.; Xing, C. C.; Liang, Z. F.; Guardia, P.; Han, X.; Zuo, Y.; Llorca, J.; Arbiol, J.; Li, J. S.; Cabot, A. Activating the lattice oxygen oxidation mechanism in amorphous molybdenum cobalt oxide nanosheets for water oxidation. J. Mater. Chem. A 2022, 10, 3659–3666.
Zhou, B. H.; Gao, R. J.; Zou, J. J.; Yang, H. M. Surface design strategy of catalysts for water electrolysis. Small 2022, 18, 2202336.
Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.
Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.
Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K.; Yin, S. Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photocatalytic hydrogen evolution performance of graphitic carbon nitride: Efficient interfacial charge transfer. ACS Appl. Mater. Interfaces 2019, 11, 26898–26908.
Wang, J.; Hu, J.; Niu, S. Q.; Li, S. W.; Du, Y. C.; Xu, P. Crystalline-amorphous Ni2P4O12/NiMoOx nanoarrays for alkaline water electrolysis: Enhanced catalytic activity via in situ surface reconstruction. Small 2022, 18, 2105972.
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.
Liang, Y. X.; Sun, Y. J.; Wang, X. Y.; Fu, E. G.; Zhang, J.; Du, J. L.; Wen, X. D.; Guo, S. J. High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate. Nanoscale 2018, 10, 11357–11364.
Cheng, H. F.; Yang, N. L.; Liu, X. Z.; Yun, Q. B.; Goh, M. H.; Chen, B.; Qi, X. Y.; Lu, Q. P.; Chen, X. P.; Liu, W. et al. Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. Natl. Sci. Rev. 2019, 6, 955–961.
Gao, F.; Zhang, Y. P.; You, H. M.; Li, Z. L.; Zou, B.; Du, Y. K. Solvent-mediated shell dimension reconstruction of core@shell PdAu@Pd nanocrystals for robust C1 and C2 alcohol electrocatalysis. Small 2021, 17, 2101428.
Xu, X. J.; Hou, X. B.; Du, P. Y.; Zhang, C. H.; Zhang, S. C.; Wang, H. L.; Toghan, A.; Huang, M. H. Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Res. 2022, 15, 7124–7133.
Zhang, Y. P.; Gao, F.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K. Engineering spiny PtFePd@PtFe/Pt core@multishell nanowires with enhanced performance for alcohol electrooxidation. ACS Appl. Mater. Interfaces 2019, 11, 30880–30886.
Sa, Y. J.; Seo, D. J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S. et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056.
Zhang, X.; Zhao, Y. F.; Jia, X. D.; Zhao, Y. X.; Shang, L.; Wang, Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Silica-protected ultrathin Ni3FeN nanocatalyst for the efficient hydrolytic dehydrogenation of NH3BH3. Adv. Energy Mater. 2018, 8, 1702780.
Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.
Kang, X. C.; Liu, H. Z.; Hou, M. Q.; Sun, X. F.; Han, H. L.; Jiang, T.; Zhang, Z. F.; Han, B. X. Synthesis of supported ultrafine non-noble subnanometer-scale metal particles derived from metal-organic frameworks as highly efficient heterogeneous catalysts. Angew. Chem., Int. Ed. 2016, 55, 1080–1084.
Malonzo, C. D.; Shaker, S. M.; Ren, L. M.; Prinslow, S. D.; Platero-Prats, A. E.; Gallington, L. C.; Borycz, J.; Thompson, A. B.; Wang, T. C.; Farha, O. K. et al. Thermal stabilization of metal-organic framework-derived single-site catalytic clusters through nanocasting. J. Am. Chem. Soc. 2016, 138, 2739–2748.
Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.
Zhang, Y. P.; Gao, F.; Wang, D. Q.; Li, Z. L.; Wang, X. M.; Wang, C. Q.; Zhang, K. W.; Du, Y. K. Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting. Coord. Chem. Rev. 2023, 475, 214916.
Zhang, Y. P.; Li, Z. L.; Zhang, K. W.; Wu, Z. Y.; Gao, F.; Du, Y. K. Heterogeneous interface engineering for boosting electron transfer induced by MOF-derived yolk-shell trimetallic phosphide nanospindles for robust water oxidation electrocatalysis. Appl. Surf. Sci. 2022, 590, 153102.
Hong, H.; Liu, J. L.; Huang, H. W.; Atangana Etogo, C.; Yang, X. F.; Guan, B. Y.; Zhang, L. Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries. J. Am. Chem. Soc. 2019, 141, 14764–14771.
Wang, F. L.; Hou, T. T.; Zhao, X.; Yao, W.; Fang, R. Q.; Shen, K.; Li, Y. W. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, 2102690.
Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.
Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O’Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.
Jang, H.; Jin, W.; Nam, G.; Yoo, Y.; Jeon, J. S.; Park, J.; Kim, M. G.; Cho, J. Exploring the artificially induced nonstoichiometric effect of Li2RuO3 as a reactive promoter on electrocatalytic behavior. Energy Environ. Sci. 2020, 13, 2167–2177.
Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–13844.
Zhang, Y. J.; Xu, Z. F.; Li, G. Y.; Huang, X. J.; Hao, W. C.; Bi, Y. P. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 14229–14233.
Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.
Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.
Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust ph-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.