AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Highlight | Open Access

Towards the optimal interstitial doping for halide perovskites

Sang-Hyun Chin1Jin-Wook Lee1,2( )
Department of Nano Science and Technology and Department of Nanoengineering, Sungkyunkwan University (SKKU) Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
SKKU Institute of Energy Science & Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
Show Author Information

Graphical Abstract

This highlight discusses the latest report on optimal interstitial doping of halide perovskites and awaiting issues associated with it.

Abstract

Interstitial doping has been considered as an effective strategy to passivate and immobilize the ionic defects of metal halide perovskites to enhance performance and stability of perovskite solar cells. However, high dopant dosage causes lattice distortion which results in micro-strain and subsequent phase destabilization. This highlight discusses the latest report regarding optimal interstitial doping with a multivalent alkali metal cation for perovskites and awaiting issues associated with it.

References

[1]

Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918.

[2]

Fakharuddin, A.; Gangishetty, M. K.; Abdi-Jalebi, M.; Chin, S. H.; Bin Mohd Yusoff, A. R.; Congreve, D. N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H. J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216.

[3]

Lin, Y. H.; Sakai, N.; Da, P. M.; Wu, J. Y.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J. L.; Oliver, R. D. J.; Lim, J. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102.

[4]

Liu, Z. H.; Qiu, L. B.; Ono, L. K.; He, S. S.; Hu, Z. H.; Jiang, M. W.; Tong, G. Q.; Wu, Z. F.; Jiang, Y.; Son, D. Y. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability. Nat. Energy 2020, 5, 596–604.

[5]

Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; García De Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.

[6]

Yuan, Y. B.; Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286–293.

[7]

Tabassum, M.; Zia, Q.; Zhou, Y. F.; Reece, M. J.; Su, L. A review on advances in doping with alkali metals in halide perovskite materials. SN Appl. Sci. 2021, 3, 888.

[8]

Lee, J. W.; Tan, S.; Seok, S. I.; Yang, Y.; Park, N. G. Rethinking the A cation in halide perovskites. Science 2022, 375, eabj1186.

[9]

Son, D. Y.; Kim, S. G.; Seo, J. Y.; Lee, S. H.; Shin, H.; Lee, D.; Park, N. G. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 2018, 140, 1358–1364.

[10]

Cao, J.; Tao, S. X.; Bobbert, P. A.; Wong, C. P.; Zhao, N. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 2018, 30, 1707350.

[11]

Fang, Z. S.; He, H. P.; Gan, L.; Li, J.; Ye, Z. Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv. Sci. 2018, 5, 1800736.

[12]

Yang, B. W.; Bogachuk, D.; Suo, J. J.; Wagner, L.; Kim, H.; Lim, J.; Hinsch, A.; Boschloo, G.; Nazeeruddin, M. K.; Hagfeldt, A. Strain effects on halide perovskite solar cells. Chem. Soc. Rev. 2022, 51, 7509–7530.

[13]

Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.

[14]

Jones, T. W.; Osherov, A.; Alsari, M.; Sponseller, M.; Duck, B. C.; Jung, Y. K.; Settens, C.; Niroui, F.; Brenes, R.; Stan, C. V. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 2019, 12, 596–606.

[15]

Zhao, J. J.; Deng, Y. H.; Wei, H. T.; Zheng, X. P.; Yu, Z. H.; Shao, Y. C.; Shield, J. E.; Huang, J. S. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, eaao5616.

[16]

Zhao, Y. P.; Yavuz, I.; Wang, M. H.; Weber, M. H.; Xu, M. J.; Lee, J. H.; Tan, S.; Huang, T. Y.; Meng, D.; Wang, R. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 2022, 21, 1396–1402.

Nano Research Energy
Article number: e9120071
Cite this article:
Chin S-H, Lee J-W. Towards the optimal interstitial doping for halide perovskites. Nano Research Energy, 2023, 2: e9120071. https://doi.org/10.26599/NRE.2023.9120071

2116

Views

391

Downloads

5

Crossref

4

Scopus

Altmetrics

Received: 20 March 2023
Accepted: 07 April 2023
Published: 18 May 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return