All-inorganic CsPbI3–xBrx perovskite solar cells (PSCs) are advantageous in terms of high thermal stability, while its efficiency lags behind those of organic-inorganic hybrid perovskite counterparts. Defect passivations have been extensively applied for enhancing efficiency of all-inorganic PSCs, which are mainly based on univocal defect passivation of perovskite layer. Herein, we incorporated a bis-dimethylamino-functionalized fullerene derivative (abbreviated as PCBDMAM) as an interlayer between ZnO electron transport layer (ETL) and all-inorganic CsPbI2.25Br0.75 perovskite layer, accomplishing synchronous defect passivations of both layers and consequently dramatic enhancements of efficiency and thermal stability of PSC devices. Upon spin-coating PCBDMAM onto ZnO ETL, the surface defects of ZnO especially oxygen vacancies can be effectively passivated due to the formation of Zn−N ionic bonds. In addition, PCBDMAM incorporation affords effective passivation of PbI and IPb antisite defects within the atop perovskite layer as well via coordination bonding with Pb2+. As a result, the regular-structure planar CsPbI2.25Br0.75 PSC device delivers a champion power conversion efficiency (PCE) of 17.04%, which surpasses that of the control device (15.44%). Moreover, the PCBDMAM-incorporated PSC device maintains ~ 80% of its initial PCE after 600 h heating at 85 °C hot plate in N2 atmosphere, whereas PCE of the control device degrades rapidly to ~ 62% after 460 h heating under identical conditions. Hence, PCBDMAM incorporation benefited dramatic improvement of the thermal stability of PSC device.
Ava, T. T.; Al Mamun, A.; Marsillac, S.; Namkoong, G. A review: Thermal stability of methylammonium lead halide based perovskite solar cells. Appl. Sci. 2019, 9, 188.
Philippe, B.; Park, B. W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—A photoelectron spectroscopy investigation. Chem. Mater. 2015, 27, 1720–1731.
Jia, X.; Zuo, C. T.; Tao, S. X.; Sun, K.; Zhao, Y. X.; Yang, S. F.; Cheng, M.; Wang, M. K.; Yuan, Y. B.; Yang, J. L. et al. CsPb(IxBr1–x)3 solar cells. Sci. Bull. 2019, 64, 1532–1539.
Rong, Y. G.; Hu, Y.; Mei, A. Y.; Tan, H. R.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. W. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235.
Wu, X.; Ma, J. J.; Qin, M. C.; Guo, X. L.; Li, Y. H.; Qin, Z. T.; Xu, J. B.; Lu, X. H. Control over light soaking effect in all-inorganic perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2101287.
Mali, S. S.; Patil, J. V.; Rondiya, S. R.; Dzade, N. Y.; Steele, J. A.; Nazeeruddin, M. K.; Patil, P. S.; Hong, C. K. Terbium-doped and dual-passivated γ-CsPb(I1–xBrx)3 inorganic perovskite solar cells with improved air thermal stability and high efficiency. Adv. Mater. 2022, 34, 2203204.
Fang, Z. M.; Meng, X. Y.; Zuo, C. T.; Li, D.; Xiao, Z.; Yi, C. Y.; Wang, M. K.; Jin, Z. W.; Yang, S. F.; Ding, L. M. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci. Bull. 2019, 64, 1743–1746.
Wang, Y.; Zhang, T. Y.; Kan, M.; Zhao, Y. X. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 2018, 140, 12345–12348.
Wang, J.; Zhang, J.; Zhou, Y. Z.; Liu, H. B.; Xue, Q. F.; Li, X. S.; Chueh, C. C.; Yip, H. L.; Zhu, Z. L.; Jen, A. K. Y. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 2020, 11, 177.
Tian, J. J.; Xue, Q. F.; Tang, X. F.; Chen, Y. X.; Li, N.; Hu, Z. C.; Shi, T. T.; Wang, X.; Huang, F.; Brabec, C. J. et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 2019, 31, 1901152.
Zhao, H.; Yang, S. M.; Han, Y.; Yuan, S. H.; Jiang, H.; Duan, C. Y.; Liu, Z. K.; Liu, S. Z. A high mobility conjugated polymer enables air and thermally stable CsPbI2Br perovskite solar cells with an efficiency exceeding 15%. Adv. Mater. Technol. 2019, 4, 1900311.
Yuan, Q.; Tang, X. X.; Shu, Q. W.; Zhu, B. T.; Cai, J. H.; He, Y. P.; Zhou, D. Y.; Feng, L. Double-side healing at CsPbI2Br/ZnO interface by bipyrimidine hydroiodide enables inverted solar cells with enhanced efficiency and stability. Chem. Eng. J. 2022, 435, 134760.
Ye, Q. F.; Zhao, Y.; Mu, S. Q.; Ma, F.; Gao, F.; Chu, Z. M.; Yin, Z. G.; Gao, P. Q.; Zhang, X. W.; You, J. B. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 2019, 31, 1905143.
Zheng, Y. F.; Yang, X. Y.; Su, R.; Wu, P.; Gong, Q. H.; Zhu, R. High-performance CsPbIxBr3–x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation. Adv. Funct. Mater. 2020, 30, 2000457.
Yang, S. M.; Liu, W. D.; Han, Y.; Liu, Z. K.; Zhao, W. J.; Duan, C. Y.; Che, Y. H.; Gu, H. S.; Li, Y. B.; Liu, S. Z. 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability. Adv. Energy Mater. 2020, 10, 2002882.
Yao, W. L.; Fang, S. Y.; Wang, Y. Y.; Hu, Z. Y.; Huang, L. K.; Liu, X. H.; Jiang, T.; Zhang, J.; Wang, J.; Zhu, Y. J. Suppression of hysteresis in all-inorganic perovskite solar cells by the incorporation of PCBM. Appl. Phys. Lett. 2021, 118, 123502.
Duan, C. H.; Li, J.; Liu, Z. D.; Wen, Q. Y.; Tang, H. L.; Yan, K. Y. Highly electroluminescent and stable inorganic CsPbI2Br perovskite solar cell enabled by balanced charge transfer. Chem. Eng. J. 2021, 417, 128053.
Liu, C.; Yang, Y. Z.; Zhang, C. L.; Wu, S. H.; Wei, L. Y.; Guo, F.; Arumugam, G. M.; Hu, J. L.; Liu, X. Y.; Lin, J. et al. Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules. Adv. Mater. 2020, 32, 1907361.
Liu, C.; Li, W. Z.; Zhang, C. L.; Ma, Y. P.; Fan, J. D.; Mai, Y. H. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828.
Jia, L. B.; Li, B. R.; Shang, Y. B.; Chen, M. Q.; Wang, G. W.; Yang, S. F. Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells. Org. Electron. 2020, 82, 105726.
Shang, Y. B.; Fang, Z. M.; Hu, W. P.; Zuo, C. T.; Li, B. R.; Li, X. C.; Wang, M. T.; Ding, L. M.; Yang, S. F. Efficient and photostable CsPbI2Br solar cells realized by adding PMMA. J. Semicond. 2021, 42, 050501.
Zhou, W. R.; Zhen, J. M.; Liu, Q.; Fang, Z. M.; Li, D.; Zhou, P. C.; Chen, T.; Yang, S. F. Successive surface engineering of TiO2 compact layers via dual modification of fullerene derivatives affording hysteresis-suppressed high-performance perovskite solar cells. J. Mater. Chem. A 2017, 5, 1724–1733.
Fang, Z. M.; Liu, L.; Zhang, Z. M.; Yang, S. F.; Liu, F. Y.; Liu, M. Z.; Ding, L. M. CsPbI2.25Br0.75 solar cells with 15.9% efficiency. Sci. Bull. 2019, 64, 507–510.
Wang, H. X. ; Cao, S. L. ; Yang, B. ; Li, H. Y. ; Wang, M. ; Hu, X. F. ; Sun, K. ; Zang, Z. G. NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process. Sol. RRL 2020, 1900363.
Zuo, L. J.; Gu, Z. W.; Ye, T.; Fu, W. F.; Wu, G.; Li, H. Y.; Chen, H. Z. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 2015, 137, 2674–2679.
Auret, F. D.; Goodman, S. A.; Hayes, M.; Legodi, M. J.; Van Laarhoven, H. A.; Look, D. C. Electrical characterization of 1.8 MeV proton-bombarded ZnO. Appl. Phys. Lett. 2001, 79, 3074–3076.
Gai, Y. Q.; Yao, B.; Li, Y. F.; Lu, Y. M.; Shen, D. Z.; Zhang, J. Y.; Zhao, D. X.; Fan, X. W.; Cui, T. Influence of hydrostatic pressure on the native point defects in wurtzite ZnO: Ab initio calculation. Phys. Lett. A 2008, 372, 5077–5082.
Ke, W. J.; Zhao, D. W.; Xiao, C. X.; Wang, C. L.; Cimaroli, A. J.; Grice, C. R.; Yang, M. J.; Li, Z.; Jiang, C. S.; Al-Jassim, M. et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 14276–14283.
Li, B. R.; Zhen, J. M.; Wan, Y. Y.; Lei, X. Y.; Liu, Q.; Liu, Y. J.; Jia, L. B.; Wu, X. J.; Zeng, H. L.; Zhang, W. F. et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl. Mater. Interfaces 2018, 10, 32471–32482.
Xiao, Q.; Tian, J. J.; Xue, Q. F.; Wang, J.; Xiong, B. J.; Han, M. M.; Li, Z.; Zhu, Z. L.; Yip, H. L.; Li, Z. A. Dopant-free squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells. Angew. Chem. , Int. Ed. 2019, 58, 17724–17730.
Zhang, M. Y.; Chen, Q.; Xue, R. M.; Zhan, Y.; Wang, C.; Lai, J. Q.; Yang, J.; Lin, H. Z.; Yao, J. L.; Li, Y. W. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 2019, 10, 4593.
Hu, W. P.; Wen, Z. L.; Yu, X.; Qian, P. S.; Lian, W. T.; Li, X. C.; Shang, Y. B.; Wu, X. J.; Chen, T; Lu, Y. L. et al. In situ surface fluorination of TiO2 nanocrystals reinforces interface binding of perovskite layer for highly efficient solar cells with dramatically enhanced ultraviolet-light stability. Adv. Sci. 2021, 8, 2004662.
Yao, Z.; Xu, Z.; Zhao, W. G.; Zhang, J. R.; Bian, H.; Fang, Y. K.; Yang, Y.; Liu, S. Z. Enhanced efficiency of inorganic CsPbI3–xBrx perovskite solar cell via self-regulation of antisite defects. Adv. Energy Mater. 2021, 11, 2100403.
Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746–751.
Li, N.; Zhu, Z. L.; Li, J. W.; Jen, A. K. Y.; Wang, L. D. Inorganic CsPb1–xSnxIBr2 for efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 2018, 8, 1800525.
Zhou, W. R.; Jia, L. B.; Chen, M. Q.; Li, X. C.; Su, Z. H.; Shang, Y. B.; Jiang, X. F.; Gao, X. Y.; Chen, T.; Wang, M. T. et al. An improbable amino-functionalized fullerene spacer enables 2D/3D hybrid perovskite with enhanced electron transport in solar cells. Adv. Funct. Mater. 2022, 32, 2201374.
Shang, Y. B.; Li, X. C.; Lian, W. T.; Jiang, X. F.; Wang, X.; Chen, T.; Xiao, Z. G.; Wang, M. T.; Lu, Y. L.; Yang, S. F. Lead acetate as a superior lead source enables highly efficient and stable all-inorganic lead-tin perovskite solar cells. Chem. Eng. J. 2023, 457, 141246.
Zhen, J. M.; Zhou, W. R.; Chen, M. Q.; Li, B. R.; Jia, L. B.; Wang, M. T.; Yang, S. F. Pyridine-functionalized fullerene additive enabling coordination interactions with CH3NH3PbI3 perovskite towards highly efficient bulk heterojunction solar cells. J. Mater. Chem. A 2019, 7, 2754–2763.
Luo, Y. X.; Chen, J. D.; Hou, H. Y.; Ye, Y. C.; Shen, K. C.; Lu, L. Y.; Li, Y. Q.; Song, F.; Gao, X. Y.; Tang, J. X. Hierarchically manipulated charge recombination for mitigating energy loss in CsPbI2Br solar cells. ACS Appl. Mater. Interfaces 2020, 12, 41596–41604.
Hu, W. P.; Zhou, W. R.; Lei, X. Y.; Zhou, P. C.; Zhang, M. M.; Chen, T.; Zeng, H. L.; Zhu, J.; Dai, S. Y.; Yang, S. H. et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater. 2019, 31, 1806095.
Chen, W. T.; Zhang, S. S.; Liu, Z. H.; Wu, S. H.; Chen, R.; Pan, M.; Yang, Z. C.; Zhu, H. M.; Liu, S. W.; Tang, J. et al. A tailored nickel oxide hole-transporting layer to improve the long-term thermal stability of inorganic perovskite solar cells. Sol. RRL 2019, 3, 1900346.
Li, Y. W.; Zhao, Y.; Chen, Q.; Yang, Y.; Liu, Y. S.; Hong, Z. R.; Liu, Z. H.; Hsieh, Y. T.; Meng, L.; Li, Y. F. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 15540–15547.
Yang, J. L.; Siempelkamp, B. D.; Mosconi, E.; De Angelis, F.; Kelly, T. L. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 2015, 27, 4229–4236.
Shen, E. C.; Chen, J. D.; Tian, Y.; Luo, Y. X.; Shen, Y.; Sun, Q.; Jin, T. Y.; Shi, G. Z.; Li, Y. Q.; Tang, J. X. Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells. Adv. Sci. 2020, 7, 1901952.
Mali, S. S.; Patil, J. V.; Hong, C. K. Simultaneous improved performance and thermal stability of planar metal ion incorporated CsPbI2Br all-inorganic perovskite solar cells based on MgZnO nanocrystalline electron transporting layer. Adv. Energy Mater. 2020, 10, 1902708.