AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (35.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The past, present, and future of piezoelectric fluoropolymers: Towards efficient and robust wearable nanogenerators

Md. Mehebub AlamXavier Crispin( )
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden
Show Author Information

Graphical Abstract

Discovery of high-performance co-polymer of polyvinylidene difluoride (PVDF) shows promise to bring piezoelectrics to flexible and large-area applications such as smart textiles. Enegry harvesting from the body can power next generation wearable sensors and personal electronics.

Abstract

Polyvinylidene difluoride (PVDF) derivatives in metal/PVDF/metal (MPM) sandwich structures have been studied extensively since 1969. Cousin copolymers of the same family have been discovered with fascinating piezoelectric, pyroelectric, electrocaloric, and ferroelectric properties. Solution processing, flexibility, lightweight, and thermal stability make this class of materials complementary to inorganics. Thus, PVDF based polymers potentially compete with inorganic materials for a broad range of technologies such as energy generators, loudspeakers, coolers, and memories. However, the stable non-electroactive α-phase and hydrophobic nature of PVDF are the main barriers for developoing high performing and robust MPM devices in electronic applications. In this review, we present an up-to-date overview on different methods to induce the electroactive β-phase and improve the adhesion strength with metals to ensure robust and durable MPM devices. We go through advantages and disadvantages of several methods and pinpoint future opportunities in this research area. A special attention is paid to wearable piezoelectric nanogenerators for energy harvesting from human body motion, where flexible PVDF derivatives are compared with rigid piezoelectric ceramics. While the piezoelectric coefficient of PVDF (d33 ~ 24–34 pm/V) is one order lower than ceramic materials, novel co-polymers of PVDF display d33 > 1000 pm/V upon bias. This shows promise to bring piezoelectrics to flexible and large-area applications such as smart textiles. We also discussed challenges to improve wearability, such as light weight, breathability, and flexibility.

References

[1]

Lovinger, A. J. Ferroelectric polymers. Science 1983, 220, 1115–1121.

[2]

Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

[3]

Furukawa, T.; Date, M.; Fukada, E. Hysteresis phenomena in polyvinylidene fluoride under high electric field. J. Appl. Phys. 1980, 51, 1135–1141.

[4]

Kawai, H. The piezoelectricity of poly(vinylidene fluoride). Jpn. J. Appl. Phys. 1969, 8, 975–976.

[5]

Bergman, J. G.; McFee, Jr. J. H.; Crane, G. R. Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Appl. Phys. Lett. 1971, 18, 203–205.

[6]

Hassan, Y. A.; Chen, L.; Geng, X. W.; Jiang, Z. Y.; Zhang, F.; Luo, S. B.; Hu, H. L. Electrocaloric effect of structural configurated ferroelectric polymer nanocomposites for solid-state refrigeration. ACS Appl. Mater. Interfaces 2021, 13, 46681–46693.

[7]

Salimi, A.; Yousefi, A. A. Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699–704.

[8]

Wan, C. Y.; Bowen, C. R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A 2017, 5, 3091–3128.

[9]

Ferreira, A.; Costa, P.; Carvalho, H.; Nobrega, J. M.; Sencadas, V.; Lanceros-Mendez, S. Extrusion of poly(vinylidene fluoride) filaments: Effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties. J. Polym. Res. 2011, 18, 1653–1658.

[10]

Kabir, E.; Khatun, M.; Nasrin, L.; Raihan, M. J.; Rahman, M. Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J. Phys. D: Appl. Phys. 2017, 50, 163002.

[11]

Liu, Z. Z.; Li, S. S.; Zhu, J. Z.; Mi, L. W.; Zheng, G. Q. Fabrication of β-phase-enriched PVDF sheets for self-powered piezoelectric sensing. ACS Appl. Mater. Interfaces 2022, 14, 11854–11863.

[12]

Chen, X.; Qin, H. C.; Qian, X. S.; Zhu, W. Y.; Li, B.; Zhang, B.; Lu, W. C.; Li, R. P.; Zhang, S. H.; Zhu, L. et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 2022, 375, 1418–1422.

[13]

Mathieson, I.; Brewis, D. M.; Sutherland, I.; Cayless, R. A. Pretreatments of fluoropolymers. J. Adhes. 1994, 46, 49–56.

[14]

Shin, Y. H.; Jung, I.; Park, H.; Pyeon, J. J.; Son, J. G.; Koo, C. M.; Kim, S.; Kang C. Y. Mechanical fatigue resistance of piezoelectric PVDF polymers. Micromachines 2018, 9, 503.

[15]

Han, S.; Choi, W. K.; Yoon, K. H.; Koh, S. K. Surface reaction on polyvinylidenefluoride (PVDF) irradiated by low energy ion beam in reactive gas environment. J. Appl. Polym. Sci. 1999, 72, 41–47.

[16]

Vecchio, M. A.; Meddeb, A. B.; Lanagan, M. T.; Ounaies, Z.; Shallenberger, J. R. Plasma surface modification of P(VDF-TrFE): Influence of surface chemistry and structure on electronic charge injection. J. Appl. Phys. 2018, 124, 114102.

[17]

Correia, D. M.; Ribeiro, C.; Sencadas, V.; Botelho, G.; Carabineiro, S. A. C.; Ribelles, J. L. G.; Lanceros-Méndez, S. Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog. Org. Coat. 2015, 85, 151–158.

[18]

Vijayakanth, T.; Liptrot, D. J.; Gazit, E.; Boomishankar, R.; Bowen C. R. Recent advances in organic and organic-inorganic hybrid materials for piezoelectric mechanical energy harvesting. Adv. Funct. Mater. 2022, 32, 2109492.

[19]

Zha, J. W.; Zhen, M. S.; Fan, B. H.; Dang, Z. M. Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy 2021, 89, 106438.

[20]

Kim, T. Y.; Kim, S. K.; Kim, S. W. Application of ferroelectric materials for improving output power of energy harvesters. Nano Converg. 2018, 5, 30.

[21]

Ralib, A. A. M.; Nordin, A. N.; Salleh, H.; Othman, R. Fabrication of aluminium doped zinc oxide piezoelectric thin film on a silicon substrate for piezoelectric MEMS energy harvesters. Microsyst. Technol. 2012, 18, 1761–1769.

[22]

Jbaily, A.; Yeung, R. W. Piezoelectric devices for ocean energy: A brief survey. J. Ocean Eng. Mar. Energy 2015, 1, 101–118.

[23]

Priya, S.; Song, H. C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S. G.; Kanno, I.; Wu, L.; Ha, D. S.; Ryu, J. et al. A review on piezoelectric energy harvesting: Materials, methods, and circuits. Energy Harvest. Syst. 2017, 4, 3–39.

[24]

Lai, Z. H.; Xu, J. C.; Bowen, C. R.; Zhou, S. X. Self-powered and self-sensing devices based on human motion. Joule 2022, 6, 1501–1565.

[25]
Fialka, J. ; Beneš, P. Comparison of methods of piezoelectric coefficient measurement. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 2012, pp 37–42.
[26]

Smith, M.; Kar-Narayan, S. Piezoelectric polymers: Theory, challenges and opportunities. Int. Mater. Rev. 2022, 67, 65–88.

[27]

Huang, Y. F.; Rui, G. C.; Li, Q.; Allahyarov, E.; Li, R. P.; Fukuto, M.; Zhong, G. J.; Xu, J. Z.; Li, Z. M.; Taylor, P. L. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 2021, 12, 675.

[28]

Bowen, C. R.; Kim, H. A.; Weaver, P. M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44.

[29]

Liu, Y.; Wang, Q. Ferroelectric polymers exhibiting negative longitudinal piezoelectric coefficient: Progress and prospects. Adv. Sci. 2020, 7, 1902468.

[30]

Li, Q. Q.; Ke, W. Y.; Chang, T. X.; Hu, Z. J. A molecular ferroelectrics induced electroactive β-phase in solution processed PVDF films for flexible piezoelectric sensors. J. Mater. Chem. C 2019, 7, 1532–1543.

[31]

Kudyukov, E. V.; Terziyan, T. V.; Antonov, I. D.; Balymov, K. G.; Safronov, A. P.; Vas’kovskiy, V. O. Phase composition, crystalline structure and piezoelectric properties of thin films of polyvinylidene fluoride obtained by the spin-coating method. Prog. Org. Coat. 2020, 147, 105857.

[32]

Thuau, D.; Kallitsis, K.; Dos Santos, F. D.; Hadziioannoua, G. All inkjet-printed piezoelectric electronic devices: Energy generators, sensors and actuators. J. Mater. Chem. C 2017, 5, 9963–9966.

[33]

Wu, Y. M.; Du, X. S.; Gao, R. Y.; Li, J. M.; Li, W. Z.; Yu, H.; Jiang, Z.; Wang, Z. D.; Tai, H. L. Self-polarization of PVDF film triggered by hydrophilic treatment for pyroelectric sensor with ultra-low piezoelectric noise. Nanoscale Res. Lett. 2019, 14, 72.

[34]

Pei, H. R.; Xie, Y. P.; Xiong, Y.; Lv, Q. N.; Chen, Y. H. A novel polarization-free 3D printing strategy for fabrication of poly (vinylidene fluoride) based nanocomposite piezoelectric energy harvester. Compos. Part B: Eng. 2021, 225, 109312.

[35]

Gregorio, Jr, R., CapitãO, R. C. Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J. Mater. Sci. 2000, 35, 299–306.

[36]

Ruggiero, E.; Reboredo, M. M.; Castro, M. S. Structural and dielectric properties of hot-pressed poly(vinylidene fluoride)-based composites. J. Compos. Mater. 2018, 52, 1399–1412.

[37]

Yin, Z. R.; Tian, B. B.; Zhu, Q. X.; Duan, C. G. Characterization and application of PVDF and its copolymer films prepared by spin-coating and Langmuir–Blodgett method. Polymers 2019, 11, 2033.

[38]

Xie, L. F.; Wang, G. L.; Jiang, C.; Yu, F. P.; Zhao, X. Properties and applications of flexible poly(vinylidene fluoride)-based piezoelectric materials. Crystals 2021, 11, 644.

[39]

Oshiki, M.; Fukada, E. Piezoelectric effect in stretched and polarized polyvinylidene fluoride film. Jpn. J. Appl. Phys. 1976, 15, 43–52.

[40]

Li, L.; Zhang, M. Q.; Rong, M. Z.; Ruan, W. H. Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv. 2014, 4, 3938–3943.

[41]

Sukumaran, S.; Chatbouri, S.; Rouxel, D.; Tisserand, E.; Thiebaud, F.; Ben Zineb, T. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intell. Mater. Syst. Struct. 2021, 32, 746–780.

[42]

Sencadas, V.; Gregorio, Jr. R.; Lanceros-Méndez, S. α to β-phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J. Macromol. Sci. Part B 2009, 48, 514–525.

[43]
Jain, A. ; Kumar, S. J. ; Mahapatra, D. R. ; Kumar, H. H. Detailed studies on the formation of piezoelectric β-phase of PVDF at different hot-stretching conditions. In Proceedings of SPIE 7647, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010, San Diego, USA, 2010, pp 76472C.
[44]

Kumar, A.; Periman, M. M. Simultaneous stretching and corona poling of PVDF and P(VDF-TriFE) films. II. J. Phys. D: Appl. Phys. 1993, 26, 469–473.

[45]

Mahadeva, S. K.; Berring, J.; Walus, K.; Stoeber, B. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling. J. Phys. D: Appl. Phys. 2013, 46, 285305.

[46]

Kaurat, T.; Nath, R.; Perlman, M. M. Simultaneous stretching and corona poling of PVDF films. J. Phys. D: Appl. Phys. 1991, 24, 1848–1852.

[47]

Dani, S. S.; Tripathy, A.; Alluri, N. R.; Balasubramaniam, S.; Ramadoss, A. A critical review: The impact of electrical poling on the longitudinal piezoelectric strain coefficient. Mater. Adv. 2022, 3, 8886–8921.

[48]

Park, J. H.; Kurra, N.; AlMadhoun, M. N.; Odeh, I. N.; Alshareef, H. N. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices. J. Mater. Chem. C 2015, 3, 2366–2370.

[49]

Satapathy, S.; Pawar, S.; Gupta, P. K.; Varma, K. B. R. Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 2011, 34, 727–733.

[50]

Lando, J. B.; Doll, W. W. The polymorphism of poly(vinylidene fluoride). I. The effect of head-to-head structure. J. Macromol. Sci. Part B 1968, 2, 205–218.

[51]
Mao, D. ; Gnade, B. E. ; Quevedo-Lopez, M. A. Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer. In Ferroelectrics-Physical Effects. Lallart, M. , Ed. ; IntechOpen: Rijeka, 2011; pp 78–100.
[52]

Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 1989, 18, 143–211.

[53]

Koga, K.; Ohigashi, H. Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers. J. Appl. Phys. 1986, 59, 2142–2150.

[54]

Zhang, W. X.; Zaarour, B.; Zhu, L.; Huang, C.; Xu, B. G.; Jin, X. Y. A comparative study of electrospun polyvinylidene fluoride and poly(vinylidenefluoride-co-trifluoroethylene) fiber webs: Mechanical properties, crystallinity, and piezoelectric properties. J. Eng. Fibers Fabr. 2020, 15, 1–8.

[55]

Bauer, F. Review on the properties of the ferrorelaxor polymers and some new recent developments. Appl. Phys. A 2012, 107, 567–573.

[56]

Xu, H. S.; Cheng, Z. Y.; Olson, D.; Mai, T.; Zhang, Q. M.; Kavarnos, G. Ferroelectric and electromechanical properties of poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 2001, 78, 2360–2362.

[57]

Ju, W. E.; Moon, Y. J.; Park, C. H.; Choi, S. T. A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators. Smart Mater. Struct. 2014, 23, 074004.

[58]

Choi, S. T.; Kwon, J. O.; Bauer, F. Multilayered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique. Sens. Actuators A Phys. 2013, 203, 282–290.

[59]

Lheritier, P.; Noel, S.; Vaxelaire, N.; Dos Santos, F. D.; Defay, E. Actuation efficiency of polyvinylidene fluoride-based co- and ter-polymers. Polymer 2018, 156, 270–275.

[60]

Liu, Q.; Le, M. Q.; Richard, C.; Liang, R.; Cottinet, P. J.; Capsal, J. F. Enhanced pseudo-piezoelectric dynamic force sensors based on inkjet-printed electrostrictive terpolymer. Org. Electron. 2019, 67, 259–271.

[61]

Huan, Y.; Liu, Y. Y.; Yang, Y. F. Simultaneous stretching and static electric field poling of poly(vinylidene fluoride-hexafluoropropylene) copolymer films. Polym. Eng. Sci. 2007, 47, 1630–1633.

[62]

Li, Z. M.; Wang, Y. H.; Cheng, Z. Y. Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl. Phys. Lett. 2006, 88, 062904.

[63]

Salimi, A.; Yousefi, A. A. Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 3487–3495.

[64]

Ma, W. Z.; Zhang, J.; Wang, X. L. Formation of poly(vinylidene fluoride) crystalline phases from tetrahydrofuran/N, N-dimethylformamide mixed solvent. J. Mater. Sci. 2008, 43, 398–401.

[65]

Mahale, B.; Bodas, D.; Gangal, S. A. Study of β-phase development in spin-coated PVDF thick films. Bull. Mater. Sci. 2017, 40, 569–575.

[66]

Nangia, A.; Desiraju, G. R. Pseudopolymorphism: Occurrences of hydrogen bonding organic solvents in molecular crystals. Chem. Commun. 1999, 605–606.

[67]

Benz, M.; Euler, W. B.; Gregory, O. J. The influence of preparation conditions on the surface morphology of poly(vinylidene fluoride) films. Langmuir 2001, 17, 239–243.

[68]

He, X. J.; Yao, K. Crystallization mechanism and piezoelectric properties of solution-derived ferroelectric poly(vinylidene fluoride) thin films. Appl. Phys. Lett. 2006, 89, 112909.

[69]

Benz, M.; Euler, W. B.; Gregory, O. J. The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules 2002, 35, 2682–2688.

[70]

Chen, S. T.; Yao, K.; Tay, F. E. H.; Liow, C. L. Ferroelectric poly(vinylidene fluoride) thin films on Si substrate with the β phase promoted by hydrated magnesium nitrate. J. Appl. Phys. 2007, 102, 104108.

[71]

Manna, S.; Batabyal, S. K.; Nandi. A. K. Preparation and characterization of silver-poly(vinylidene fluoride) nanocomposites: Formation of piezoelectric polymorph of poly(vinylidene fluoride). J. Phys. Chem. B 2006, 110, 12318–12326.

[72]

Mandal, D.; Henkel, K.; Schmeisser, D. Comment on “preparation and characterization of silver-poly(vinylidene fluoride) nanocomposites: Formation of piezoelectric polymorph of poly(vinylidene fluoride)”. J. Phys. Chem. B 2011, 115, 10567–10569.

[73]

Mandal, D.; Henkel, K.; Schmeißer, D. The electroactive β-phase formation in poly(vinylidene fluoride) by gold nanoparticles doping. Mater. Lett. 2012, 73, 123–125.

[74]

Mandal, D.; Kim, K. J.; Lee, J. S. Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films. Langmuir 2012, 28, 10310–10317.

[75]

Ghosh, S. K.; Alam, M.; Mandal, D. The in situ formation of platinum nanoparticles and their catalytic role in electroactive phase formation in poly(vinylidene fluoride): A simple preparation of multifunctional poly(vinylidene fluoride) films doped with platinum nanoparticles. RSC Adv. 2014, 4, 41886–41894.

[76]

Lopes, A. C.; Caparros, C.; Ribelles, J. L. G.; Neves, I. C.; Lanceros-Mendez, S. Electrical and thermal behavior of γ-phase poly(vinylidene fluoride)/NaY zeolite composites. Microporous Mesoporous Mater. 2012, 161, 98–105.

[77]

Kim, S. H.; Park, S. J.; Cho, C. Y.; Kang, H. S.; Sohn, E. H.; Park, I. J.; Ha, J. W.; Lee, S. G. Preparation and electroactive phase adjustment of Ag-doped poly(vinylidene fluoride) (PVDF) films. RSC Adv. 2019, 9, 40286–40291.

[78]

Jana, S.; Garain, S.; Ghosh, S. K.; Sen, S.; Mandal, D. The preparation of γ-crystalline non-electrically poled photoluminescant ZnO-PVDF nanocomposite film for wearable nanogenerators. Nanotechnology 2016, 27, 445403.

[79]

Wang, J.; Hu, J. T.; Sun, Q. M.; Zhu, K. J.; Li, B. W.; Qiu, J. H. Dielectric and energy storage performances of PVDF-based composites with colossal permittivitied Nd-doped BaTiO3 nanoparticles as the filler. AIP Adv. 2017, 7, 125104.

[80]

Lizundia, E.; Reizabal, A.; Costa, C. M.; Maceiras, A.; Lanceros-Méndez, S. Electroactive γ-Phase, enhanced thermal and mechanical properties and high ionic conductivity response of poly (vinylidene fluoride)/cellulose nanocrystal hybrid nanocomposites. Materials 2020, 13, 743.

[81]

Barnes, E.; Jefcoat, J. A.; Alberts, E. M.; McKechnie, M. A.; Peel, H. R.; Buchanan, J. P.; Weiss, Jr. C. A.; Klaus, K. L.; Mimun, L. C.; Warner, C. M. Effect of cellulose nanofibrils and TEMPO-mediated oxidized cellulose nanofibrils on the physical and mechanical properties of poly(vinylidene fluoride)/cellulose nanofibril composites. Polymers 2019, 11, 1091.

[82]

Barrau, S.; Ferri, A.; Da Costa, A.; Defebvin, J.; Leroy, S.; Desfeux, R.; Lefebvre, J. M. Nanoscale investigations of α- and γ-crystal phases in PVDF-based nanocomposites. ACS Appl. Mater. Interfaces 2018, 10, 13092–13099.

[83]

Brun, J. F.; Binet, C.; Tahon, J. F.; Addad, A.; Tranchard, P.; Barrau, S. Thermoelectric properties of bulk multi-walled carbon nanotube-poly(vinylidene fluoride) nanocomposites: Study of the structure/property relationships. Synth. Met. 2020, 269, 116525.

[84]

Pusty, M.; Sinha, L.; Shirage, P. M. A flexible self-poled piezoelectric nanogenerator based on a rGO-Ag/PVDF nanocomposite. New J. Chem. 2019, 43, 284–294.

[85]

Alam, M.; Ghosh, S. K.; Sarkar, D.; Sen, S.; Mandal, D. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: An excellent material for energy storage applications and piezoelectric throughput. Nanotechnology 2017, 28, 015503.

[86]

Alam, M.; Sultana, A.; Sarkar, D.; Mandal, D. Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor. Nanotechnology 2017, 28, 365401.

[87]

Martins, P.; Costa, C. M.; Benelmekki, M.; Botelhob, G.; Lanceros-Mendez, S. On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 2012, 14, 2807–2811.

[88]

Sebastian, M. S.; Larrea, A.; Gonçalves, R.; Alejo, T.; Vilas, J. L.; Sebastian, V.; Martins, P.; Lanceros-Mendez, S. Understanding nucleation of the electroactive β-phase of poly(vinylidene fluoride) by nanostructures. RSC Adv. 2016, 6, 113007–113015.

[89]

Wang, J. C.; Wu, J. L.; Xu, W.; Zhang, Q.; Fu, Q. Preparation of poly(vinylidene fluoride) films with excellent electric property, improved dielectric property and dominant polar crystalline forms by adding a quaternary phosphorus salt functionalized graphene. Compos. Sci. Technol. 2014, 91, 1–7.

[90]

Garain, S.; Sinha, T. K.; Adhikary, P.; Henkel, K.; Sen, S.; Ram, S.; Sinha, C.; Schmeißer, D.; Mandal, D. Self-poled transparent and flexible UV light-emitting cerium complex-PVDF composite: A high-performance nanogenerator. ACS Appl. Mater. Interfaces 2015, 7, 1298–1307.

[91]

Thakur, P.; Kool, A.; Bagchi, B.; Hoque, N. A.; Das, S.; Nandy, P. The role of cerium(III)/yttrium(III) nitrate hexahydrate salts on electroactive β phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films. RSC Adv. 2015, 5, 28487–28496.

[92]

Jella, V.; Ippili, S.; Eom, J. H.; Choi, J.; Yoon, S. G. Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films. Nano Energy 2018, 53, 46–56.

[93]

Sultana, A.; Sadhukhan, P.; Alam, M.; Das, S.; Middya, T. R.; Mandal, D. Organo-lead halide perovskite induced electroactive β-phase in porous PVDF films: An excellent material for photoactive piezoelectric energy harvester and photodetector. ACS Appl. Mater. Interfaces 2018, 10, 4121–4130.

[94]

Sultana, A.; Alam, M.; Roy, K.; Sadhukhan, P.; Das, S.; Sarkar, S.; Middya, T. R.; Mandal, D. Perovskite methylammonium lead bromide incorporated poly(vinylidene fluoride) composite for flexible cantilever based self-powered vibration sensor. Mater. Res. Express 2019, 6, 115709.

[95]

Bune, A. V.; Zhu, C. X.; Ducharme, S.; Blinov, L. M.; Fridkin, V. M.; Palto, S. P.; Petukhova, N. G.; Yudin, S. G. Piezoelectric and pyroelectric properties of ferroelectric Langmuir–Blodgett polymer films. J. Appl. Phys. 1999, 85, 7869–7873.

[96]

Palto, S.; Blinov, L.; Bune, A.; Dubovik, E.; Fridkin, V.; Petukhova, N.; Verkhovskaya, K.; Yudin, S. Ferroelectric Langmuir–Blodgett films. Ferroelectr. Lett. Sect. 1995, 19, 65–68.

[97]

Chen, S. T.; Li, X.; Yao, K.; Tay, F. E. H.; Kumar, A.; Zeng, K. Y. Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition. Polymer 2012, 53, 1404–1408.

[98]

Wang, J. L.; Liu, B. L.; Zhao, X. L.; Tian, B. B.; Zou, Y. H.; Sun, S.; Shen, H.; Sun, J. L.; Meng, X. J.; Chu, J. H. Transition of the polarization switching from extrinsic to intrinsic in the ultrathin polyvinylidene fluoride homopolymer films. Appl. Phys. Lett. 2014, 104, 182907.

[99]

Zhu, H. E.; Yamamoto, S.; Matsui, J.; Miyashita, T.; Mitsuishi, M. Ferroelectricity of poly(vinylidene fluoride) homopolymer Langmuir–Blodgett nanofilms. J. Mater. Chem. C 2014, 2, 6727–6731.

[100]

Maji, S.; Sarkar, P. K.; Aggarwal, L.; Ghosh, S. K.; Mandal, D.; Sheet, G.; Acharya, S. Self-oriented β-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir–Schaefer film. Phys. Chem. Chem. Phys. 2015, 17, 8159–8165.

[101]

Bune, A. V.; Fridkin, V. M.; Ducharme, S.; Blinov, L. M.; Palto, S. P.; Sorokin, A. V.; Yudin, S. G.; Zlatkin, A. Two-dimensional ferroelectric films. Nature 1998, 391, 874–877.

[102]

Ducharme, S.; Reece, T. J.; Othon, C. M.; Rannow, R. K. Ferroelectric polymer Langmuir–Blodgett films for nonvolatile memory applications. IEEE Trans. Device Mater. Reliab. 2005, 5, 720–735.

[103]

Zhu, H. E.; Mitsuishi, M.; Miyashita, T. Facile preparation of highly oriented poly(vinylidene fluoride) Langmuir–Blodgett nanofilms assisted by amphiphilic polymer nanosheets. Macromolecules 2012, 45, 9076–9084.

[104]

He, S.; Guo, M. F.; Dan, Z. K.; Lan, S.; Ren, W. B.; Zhou, L.; Wang, Y.; Liang, Y. H.; Zheng, Y. P.; Pan, J. Y. et al. Large-area atomic-smooth polyvinylidene fluoride Langmuir–Blodgett film exhibiting significantly improved ferroelectric and piezoelectric responses. Sci. Bull. 2021, 66, 1080–1090.

[105]

Shi, X. M.; Zhou, W. P.; Ma, D. L.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A. M. Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, 2015, 140716.

[106]
Cooley, J. F. Apparatus for electrically dispersing fluids. U.S. Patent 692, 631, February 4, 1902.
[107]

Wen, Y.; Kok, M. D. R.; Tafoya, J. P. V.; Sobrido, A. B. J.; Bell, E.; Gostick, J. T.; Herou, S.; Schlee, P.; Titirici, M. M.; Brett, D. J. L. et al. Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. J. Energy Chem. 2021, 59, 492–529.

[108]

Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253.

[109]

Ibrahim, H. M.; Klingner, A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym. Test. 2020, 90, 106647.

[110]

Zheng, J. F.; He, A. H.; Li, J. X.; Han, C. C. Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol. Rapid Commun. 2007, 28, 2159–2162.

[111]

Wang, Y. R.; Zheng, J. M.; Ren, G. Y.; Zhang, P. H.; Xu, C. A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struct. 2011, 20, 045009.

[112]

Pan, X. M.; Wang, Z.; Cao, Z. L.; Zhang, S. Q.; He, Y. H.; Zhang, Y. D.; Chen, K. S.; Hu, Y. M.; Gu, H. S. A self-powered vibration sensor based on electrospun poly(vinylidene fluoride) nanofibres with enhanced piezoelectric response. Smart Mater. Struct. 2016, 25, 105010.

[113]

Zheng, Y. B.; Cheng, L.; Yuan, M. M.; Wang, Z.; Zhang, L.; Qin, Y.; Jing, T. An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale 2014, 6, 7842–7846.

[114]

Baji, A.; Mai, Y. W.; Wong, S. C. Effect of fiber size on structural and tensile properties of electrospun polyvinylidene fluoride fibers. Polym. Eng. Sci. 2015, 55, 1812–1817.

[115]

Choi, S. W.; Kim, J. R.; Ahn, Y. R.; Jo, S. M.; Cairns, E. J. Characterization of electrospun pvdf fiber-based polymer electrolytes. Chem. Mater. 2007, 19, 104–115.

[116]

Nasir, M.; Matsumoto, H.; Danno, T.; Minagawa, M.; Irisawa, T.; Shioya, M.; Tanioka, A. Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 779–786.

[117]

Abolhasani, M. M.; Azimi, S.; Fashandi, H. Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters. RSC Adv. 2015, 5, 61277–61283.

[118]

Costa, L. M. M.; Bretas, R. E. S.; Gregorio, R. Effect of solution concentration on the electrospray/electrospinning transition and on the crystalline phase of PVDF. Mater. Sci. Appl. 2010, 1, 247–252.

[119]

He, Z. C.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 2021, 13, 174.

[120]

Alam, M.; Ghosh, S. K.; Sultana, A.; Mandal, D. An effective wind energy harvester of paper ash-mediated rapidly synthesized ZnO nanoparticle-interfaced electrospun PVDF fiber. ACS Sustain. Chem. Eng. 2018, 6, 292–299.

[121]

Chanmal, C. V.; Jog, J. P. Electrospun PVDF/BaTiO3 nanocomposites: Polymorphism and thermal emissivity studies. Int. J. Plast. Technol. 2011, 15, 1–9.

[122]

Bafqi, M. S. S.; Bagherzadeh, R.; Latifi, M. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J. Polym. Res. 2015, 22, 130.

[123]

Gonçalves, R.; Martins, P.; Moya, X.; Ghidini, M.; Sencadas, V.; Botelho, G.; Mathurd, N. D.; Lanceros-Mendez, S. Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. Nanoscale 2015, 7, 8058–8061.

[124]

Zheng, T.; Yue, Z. L.; Wallace, G. G.; Du, Y.; Martins, P.; Lanceros-Mendez, S.; Higgins, M. J. Local probing of magnetoelectric properties of PVDF/Fe3O4 electrospun nanofibers by piezoresponse force microscopy. Nanotechnology 2017, 28, 065707.

[125]

Sharma, M.; Srinivas, V.; Madras, G.; Bose, S. Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: Assessing through piezoresponse force microscopy. RSC Adv. 2016, 6, 6251–6258.

[126]

Dhakras, D.; Borkar, V.; Ogale, S.; Jog, J. Enhanced piezoresponse of electrospun PVDF mats with a touch of nickel chloride hexahydrate salt. Nanoscale 2012, 4, 752–756.

[127]

Alam, M.; Sultana, A.; Mandal, D. Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator. ACS Appl. Energy Mater. 2018, 1, 3103–3112.

[128]

Fortunato, M.; Cavallini, D.; De Bellis, G.; Marra, F.; Tamburrano, A.; Sarto, F.; Sarto, M. S. Phase inversion in PVDF films with enhanced piezoresponse through spin-coating and quenching. Polymers 2019, 11, 1096.

[129]

Soin, N.; Boyer, D.; Prashanthi, K.; Sharma, S.; Narasimulu, A. A.; Luo, J.; Shah, T. H.; Siores, E.; Thundat, T. Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 2015, 51, 8257–8260.

[130]

Meng, N.; Ren, X. T.; Santagiuliana, G.; Ventura, L.; Zhang, H.; Wu, J. Y.; Yan, H. X.; Reece, M. J.; Bilotti, E. Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 2019, 10, 4535.

[131]

Huang, Z. X.; Wang, M. M.; Feng, Y. H.; Qu, J. P. β-phase formation of polyvinylidene fluoride via hot pressing under cyclic pulsating pressure. Macromolecules 2020, 53, 8494–8501.

[132]

Jarvis, C. R.; Macklin, W. J.; Macklin, A. J.; Mattingley, N. J.; Kronfli, E. Use of grafted PVdF-based polymers in lithium batteries. J. Power Sources 2001, 97–98, 664–666.

[133]

Kumar, D.; Li, L.; Chen, Z. Mechanically robust polyvinylidene fluoride (PVDF) based superhydrophobic coatings for self-cleaning applications. Prog. Org. Coat. 2016, 101, 385–390.

[134]

Zhu, G. D.; Zeng, Z. G.; Zhang, L.; Yan, X. J. Polarization fatigue in ferroelectric vinylidene fluoride and trifluoroethylene copolymer films. Appl. Phys. Lett. 2006, 89, 102905.

[135]

Zhao, D.; Katsouras, I.; Li, M. Y.; Asadi, K.; Tsurumi, J.; Glasser, G.; Takeya, J.; Blom, P. W. M.; de Leeuw, D. M. Polarization fatigue of organic ferroelectric capacitors. Sci. Rep. 2014, 4, 5075.

[136]

Lee, C. S.; Kim, J. Y.; Lee, D. E.; Joo, J.; Han, S.; Beag, Y. W.; Koh, S. K. An approach to durable poly(vinylidene fluoride) thin film loudspeaker. J. Mater. Res. 2003, 18, 2904–2911.

[137]

Yu, X.; Rajamani, R.; Stelson, K. A.; Cui, T. Carbon nanotube-based transparent thin film acoustic actuators and sensors. Sens. Actuator A: Phys. 2006, 132, 626–631.

[138]

Sugimoto, T.; Ono, K.; Ando, A.; Kurozumi, K.; Hara, A.; Morita, Y.; Miura, A. PVDF-driven flexible and transparent loudspeaker. Appl. Acoust. 2009, 70, 1021–1028.

[139]

Hübler, A. C.; Bellmann, M.; Schmidt, G. C.; Zimmermann, S.; Gerlach, A.; Haentjes, C. Fully mass printed loudspeakers on paper. Org. Electron. 2012, 13, 2290–2295.

[140]

Qiu, X. L.; Schmidt, G. C.; Panicker, P. M.; Soler, R. A. Q.; Benjamin, A. J.; Hübler, A. C. Fully printed piezoelectric polymer loudspeakers with enhanced acoustic performance. Adv. Eng. Mater. 2019, 21, 1900537.

[141]

Schmidt, G. C.; Panicker, P. M.; Qiu, X. L.; Benjamin, A. J.; Soler, R. A. Q.; Wils, I.; Hübler, A. C. Paper-embedded roll-to-roll mass printed piezoelectric transducers. Adv. Mater. 2021, 33, 2006437.

[142]

Li, H.; Lim, S. Boosting performance of self-polarized fully printed piezoelectric nanogenerators via modulated strength of hydrogen bonding interactions. Nanomaterials 2021, 11, 1908.

[143]

Liu, X. G.; Shang, Y. H.; Liu, J. F.; Shao, Z. Z.; Zhang, C. H. 3D printing-enabled in-situ orientation of BaTi2O5 nanorods in β-PVDF for high-efficiency piezoelectric energy harvesters. ACS Appl. Mater. Interfaces 2022, 14, 13361–13368.

[144]

Wang, A. D.; Liu, J. H.; Shao, C. K.; Zhang, Y. M.; Chen, C. F. Electro-assisted 3D printing multi-layer PVDF/CaCl2 composite films and sensors. Coatings 2022, 12, 820.

[145]

Han, C.; He, L. R.; Wang, Q.; Zhang, C. H. Solvent-exchange-assisted 3D printing of self-polarized high β-PVDF for advanced piezoelectric energy harvesting. ACS Appl. Electron. Mater. 2022, 4, 3125–3133.

[146]

Pei, H. R.; Jing, J. J.; Chen, Y. H.; Guo, J. J.; Chen, N. 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: Promising strategy for flexible electronic skin. Nano Energy 2023, 109, 108303.

[147]

Hamasha, M. M.; Alzoubi, K.; Switzer III, J. C.; Lu, S. S.; Desu, S. B.; Poliks, M. A study on crack propagation and electrical resistance change of sputtered aluminum thin film on poly ethylene terephthalate substrate under stretching. Thin Solid Films 2011, 519, 7918–7924.

[148]

Talemi, P.; Delaigue, M.; Murphy, P.; Fabretto, M. Flexible polymer-on-polymer architecture for piezo/pyroelectric energy harvesting. ACS Appl. Mater. Interfaces 2015, 7, 8465–8471.

[149]

Lu, N. S.; Wang, X.; Suo, Z. G.; Vlassak, J. Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 2007, 91, 221909.

[150]

Lu, N. S.; Suo, Z. G.; Vlassak, J. J. The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 2010, 58, 1679–1687.

[151]

Ochoa-Putman, C.; Vaidya, U. K. Mechanisms of interfacial adhesion in metal-polymer composites-Effect of chemical treatment. Compos. Part A: Appl. Sci. Manuf. 2011, 42, 906–915.

[152]

Sim, G. D.; Won, S.; Jin, C. Y.; Park, I.; Lee, S. B.; Vlassak, J. J. Improving the stretchability of as-deposited Ag coatings on poly-ethylene-terephthalate substrates through use of an acrylic primer. J. Appl. Phys. 2011, 109, 073511.

[153]

Sim, G. D.; Won, S.; Lee, S. B. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates. Appl. Phys. Lett. 2012, 101, 191907.

[154]

Liston, E. M.; Martinu, L.; Wertheimer, M. R. Plasma surface modification of polymers for improved adhesion: A critical review. J. Adhes. Sci. Technol. 1993, 7, 1091–1127.

[155]

Boutevin, B.; Robin, J. J.; Serdani, A. Synthesis and applications of graft copolymers from ozonized poly(vinylidene fluoride)—II. Eur. Polym. J. 1992, 28, 1507–1511.

[156]

Crowe, R.; Badyal, J. P. S. Surface modification of poly(vinylidene difluoride) (PVDF) by LiOH. J. Chem. Soc., Chem. Commun. 1991, 958–959.

[157]

Baik, K.; Park, S.; Yun, C. S.; Park, C. H. Integration of polypyrrole electrode into piezoelectric PVDF energy harvester with improved adhesion and over-oxidation resistance. Polymers 2019, 11, 1071.

[158]

Lee, J. S.; Kim, G. H.; Hong, S. M.; Choi, H. J.; Seo, Y. Surface functionalization of a poly(vinylidene fluoride): Effect on the adhesive and piezoelectric properties. ACS Appl. Mater. Interfaces 2009, 1, 2902–2908.

[159]

Lee, C. S.; Joo, J.; Han, S.; Koh, S. K. Multifunctional transducer using poly(vinylidene fluoride) active layerand highly conducting poly(3,4-ethylenedioxythiophene) electrode: Actuator and generator. Appl. Phys. Lett. 2004, 85, 1841–1843.

[160]

Lee. C. S.; Joo, J.; Han, S.; Koh, S. K. An approach to durable PVDF cantilevers with highly conducting PEDOT/PSS (DMSO) electrodes. Sens. Actuators A: Phys. 2005, 121, 373–381.

[161]

Lee, J. S.; Kim, G. H.; Hong, S. M. Effect of complex ion beam/plasma treatment of the surface functionalization and crystal phase transition of piezoelectric poly(vinylidene fluoride). Mol. Cryst. Liq. Cryst. 2008, 492, 283–292.

[162]

Duca, M. D.; Plosceanu, C. L.; Pop, T. Surface modifications of polyvinylidene fluoride (PVDF) under rf Ar plasma. Polym. Degrad. Stab. 1998, 61, 65–72.

[163]

Arefi-Khonsari, F.; Kurdi, J.; Tatoulian, M.; Amouroux, J. On plasma processing of polymers and the stability of the surface properties for enhanced adhesion to metals. Surf. Coat. Technol. 2001, 142–444, 437–448.

[164]

Kaynak, A.; Mehmood, T.; Dai, X. J.; Magniez, K.; Kouzani, A. Study of radio frequency plasma treatment of PVDF film using Ar, O2 and (Ar + O2) gases for improved polypyrrole adhesion. Materials 2013, 6, 3482–3493.

[165]

Liiv, J.; Zekker, I.; Panov, D.; Sammelselg, V.; Tenno, T.; Järv, J. Chemical functionalization of a polyvinylidene fluoride surface. Polym. J. 2013, 45, 313–317.

[166]

Liu, Y. X.; Kang, E. T.; Neoh, K. G.; Tan, K. L. Surface modification of poly(vinylidene fluoride) films by graft copolymerization for adhesion improvement with evaporated metals. J. Macromol. Sci. Part A: Pure Appl. Chem. 2000, 37, 1121–1139.

[167]

Ghosh, S. Electroless copper deposition: A critical review. Thin Solid Films 2019, 669, 641–658.

[168]
Schiavone, L. M. Electroless plating of polyvinylidene fluoride. U.S. Patent 4, 180, 602. December 25, 1979.
[169]

Pascu, M.; Debarnot, D.; Poncin-Epaillard, F.; Bumbu, G. G.; Cimmino, S.; Vasile, C. Study of electroless copper plating onto PVDF modified by radio frequency plasma treatment. J. Phys. D: Appl. Phys. 2006, 39, 2224–2230.

[170]
Pascu, M.; Debarnot, D.; Durand, S.; Poncin-Epaillard, F. Surface modification of PVDF by microwave plasma treatment for electroless metallization. In Plasma Processes and Polymers. d'Agostino, R.; Favia, P.; Oehr, C.; Wertheimer, M. R., Eds.; Wiley-VCH: Weinheim, 2005.
[171]

Garcia, A.; Polesel-Maris, J.; Viel, P.; Palacin, S.; Berthelot, T. Localized ligand induced electroless plating (LIEP) process for the fabrication of copper patterns onto flexible polymer substrates. Adv. Funct. Mater. 2011, 21, 2096–2102.

[172]

Ahn, T. C.; Hong, H. S.; Kim, S. S.; Hwang, H. Y. Improvement of adhesion characteristics of copper electrodes on polyvinylidene fluoride films using bovine serum albumin. Int. J. Adhes. Adhes. 2022, 112, 103025.

[173]

Shacham-Diamand, Y.; Osaka, T.; Okinaka, Y.; Sugiyama, A.; Dubin, V. 30 years of electroless plating for semiconductor and polymer micro-systems. Microelectron. Eng. 2015, 132, 35–45.

[174]

Kim, J.; Byun, S.; Lee, S.; Ryu, J.; Cho, S.; Oh, C.; Kim, H.; No, K.; Ryu, S.; Lee, Y. M. et al. Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester. Nano Energy 2020, 75, 104992.

[175]

Li, Q. Q.; Wang, G. K.; Liang, Z. X.; Hu, Z. J. Highly transparent and adhesive poly(vinylidene difluoride) films for self-powered piezoelectric touch sensors. Chin. J. Polym. Sci. 2022, 40, 726–737.

[176]

Wang, Z. L.; Song. J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[177]

Clementi, G.; Cottone, F.; Di Michele, A.; Gammaitoni, L.; Mattarelli, M.; Perna, G.; López-Suárez, M.; Baglio, S.; Trigona, C.; Neri, I. Review on innovative piezoelectric materials for mechanical energy harvesting. Energies 2022, 15, 6227.

[178]

Das Mahapatra, S.; Mohapatra, P. C.; Aria, A. I.; Christie, G.; Mishra, Y. K.; Hofmann, S.; Thakur, V. K. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Adv. Sci. 2021, 8, 2100864.

[179]

Abbasipour, M.; Khajavi, R.; Akbarzadeh, A. H. A comprehensive review on piezoelectric polymeric and ceramic nanogenerators. Adv. Eng. Mater. 2022, 24, 2101312.

[180]

Yan, M. Y.; Xiao, Z. D.; Ye, J. J.; Yuan, X.; Li, Z. H.; Bowen, C.; Zhang, Y.; Zhang, D. Porous ferroelectric materials for energy technologies: Current status and future perspectives. Energy Environ. Sci. 2021, 14, 6158–6190.

[181]

Briscoe, J.; Dunn, S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29.

[182]

Lang, C. H.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108.

[183]

Lang, C. H.; Fang, J.; Shao, H.; Wang, H. X.; Yan, G. L.; Ding, X.; Lin, T. High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens. Nano Energy 2017, 35, 146–153.

[184]

Li, S. G.; Yuan, J. P.; Lipson, H. Ambient wind energy harvesting using cross-flow fluttering. J. Appl. Phys. 2011, 109, 026104.

[185]

Orrego, S.; Shoele, K.; Ruas, A.; Doran, K.; Caggiano, B.; Mittal, R.; Kang, S. H. Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 2017, 194, 212–222.

[186]

Guigon, R.; Chaillout, J. J.; Jager, T.; Despesse, G. Harvesting raindrop energy: Experimental study. Smart Mater. Struct. 2008, 17, 015039.

[187]

Vatansever, D.; Hadimani, R. L.; Shah, T.; Siores, E. An investigation of energy harvesting from renewable sources with PVDF and PZT. Smart Mater. Struct. 2011, 20, 055019.

[188]

Nguyen, K.; Bryant, M.; Song, I. H.; You, B. H.; Khaleghian, S. The application of PVDF-based piezoelectric patches in energy harvesting from tire deformation. Sensors 2022, 22, 9995.

[189]

Abolhasani, M. M.; Shirvanimoghaddam, K.; Naebe, M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos. Sci. Technol. 2017, 138, 49–56.

[190]

Muduli, S. P.; Veeralingam, S.; Badhulika, S. Interface induced high-performance piezoelectric nanogenerator based on a electrospun three-phase composite nanofiber for wearable applications. ACS Appl. Energy Mater. 2021, 4, 12593–12603.

[191]

Siddiqui, S.; Kim, D. I.; Roh, E.; Duy, L. T.; Trung, T. Q.; Nguyen, M. T.; Lee, N. E. A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy 2016, 30, 434–442.

[192]

Kar, E.; Bose, N.; Dutta, B.; Banerjee, S.; Mukherjee, N.; Mukherjee, S. 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester. Energy Convers. Manag. 2019, 184, 600–608.

[193]

Sun, C. L.; Shi, J.; Bayerl, D. J.; Wang, X. D. PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 2011, 4, 4508–4512.

[194]

Liu, Y. C.; Khanbareh, H.; Halim, M. A.; Feeney, A.; Zhang, X. S.; Heidari, H.; Ghannam, R. Piezoelectric energy harvesting for self-powered wearable upper limb applications. Nano Select 2021, 2, 1459–1479.

[195]

Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

[196]

Mandal, D.; Yoon, S.; Kim, K. J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Commun. 2011, 32, 831–837.

[197]

Yang, Y.; Zhang, H. L.; Zhu, G.; Lee, S.; Lin, Z. H.; Wang, Z. L. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 2013, 7, 785–790.

[198]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

[199]

Mokhtari, F.; Cheng, Z. X.; Raad, R.; Xi, J. T.; Foroughi, J. Piezofibers to smart textiles: A review on recent advances and future outlook for wearable technology. J. Mater. Chem. A 2020, 8, 9496–9522.

[200]

Panicker, S. S.; Rajeev, S. P.; Thomas, V. Impact of PVDF and its copolymer-based nanocomposites for flexible and wearable energy harvesters. Nano-Struct. Nano-Objects 2023, 34, 100949.

[201]

Surmenev, R. A.; Chernozem, R. V.; Pariy, I. O.; Surmeneva, M. A. A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy 2021, 79, 105442.

[202]

Saxena, P.; Shukla, P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26.

[203]

Pullano, S. A.; Critello, C. D.; Bianco, M. G.; Menniti, M.; Fiorillo, A. S. PVDF ultrasonic sensors for in-air applications: A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2324–2335.

[204]

Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.

[205]

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

[206]

Dolez, P. I. Energy harvesting materials and structures for smart textile applications: Recent progress and path forward. Sensors 2021, 21, 6297.

[207]

Du, K.; Lin, R. Z.; Yin, L.; Ho, J. S.; Wang, J.; Lim, C. T. Electronic textiles for energy, sensing, and communication. iScience 2022, 25, 104174.

[208]

Uddin, M.; Blevins, B.; Yadavalli, N. S.; Pham, M. T.; Nguyen, T. D.; Minko, S.; Sharma, S. Highly flexible and conductive stainless-steel thread based piezoelectric coaxial yarn nanogenerators via solution coating and touch-spun nanofibers coating methods. Smart Mater. Struct. 2022, 31, 035028.

[209]

Gao, H. P.; Minh, P. T.; Wang, H.; Minko, S.; Locklin, J.; Nguyen, T.; Sharma, S. High-performance flexible yarn for wearable piezoelectric nanogenerators. Smart Mater. Struct. 2018, 27, 095018.

[210]

Qi, Y.; McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 2010, 3, 1275–1285.

[211]

Liman, M. L. R.; Islam, M. T.; Hossain, M. M. Mapping the progress in flexible electrodes for wearable electronic textiles: Materials, durability, and applications. Adv. Electron. Mater. 2022, 8, 2100578.

[212]

Lund, A.; Rundqvist, K.; Nilsson, E.; Yu, L. Y.; Hagström, B.; Müller, C. Energy harvesting textiles for a rainy day: Woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. npj Flex. Electron. 2018, 2, 9.

[213]

Mokhtari, F.; Foroughi, J.; Zheng, T.; Cheng, Z. X.; Spinks, G. M. Triaxial braided piezo fiber energy harvesters for self-powered wearable technologies. J. Mater. Chem. A 2019, 7, 8245–8257.

[214]

Wang, B.; Richardson, T. J.; Chen, G. Y. Electroactive polymer fiber separators for stable and reversible overcharge protection in rechargeable Lithium batteries. J. Electrochem. Soc. 2014, 161, A1039–A1044.

[215]

Yu, H.; Huang, T.; Lu, M. X.; Mao, M. Y.; Zhang, Q. H.; Wang, H. Z. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 2013, 24, 405401.

[216]

Satthiyaraju, M.; Ramesh, T. Effect of annealing treatment on PVDF nanofibers for mechanical energy harvesting applications. Mater. Res. Express 2019, 6, 105366.

[217]

Ponnamma, D.; Parangusan, H.; Tanvir, A.; AlMa’adeed, M. A. A. Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater. Des. 2019, 184, 108176.

[218]

Kim, M.; Wu, Y. S.; Kan, E. C.; Fan, J. T. Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers 2018, 10, 745.

[219]

Zeng, W.; Tao, X. M.; Chen, S.; Shang, S. M.; Chan, H. L. W.; Choy. S. H. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 2013, 6, 2631–2638.

[220]

Ghosh, S. K.; Mandal, D. Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 2018, 53, 245–257.

[221]

Maity, K.; Mandal, D. All-organic high-performance piezoelectric nanogenerator with multilayer assembled electrospun nanofiber mats for self-powered multifunctional sensor. ACS Appl. Mater. Interfaces 2018, 10, 18257–18269.

[222]

Sanchez, F. J. D.; Chung, M.; Waqas, M.; Koutsos, V.; Smith, S.; Radacsi, N. Sponge-like piezoelectric micro- and nanofiber structures for mechanical energy harvesting. Nano Energy 2022, 98, 107286.

[223]

Soin, N.; Shah, T. H.; Anand, S. C.; Geng, J. F.; Pornwannachai, W.; Mandal, P.; Reid, D.; Sharma, S.; Hadimani, R. L.; Bayramolf, D. V. et al. Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 2014, 7, 1670–1679.

[224]

Li, B. Z.; Zhang, F. F.; Guan, S. A.; Zheng, J. M.; Xu, C. Y. Wearable piezoelectric device assembled by one-step continuous electrospinning. J. Mater. Chem. C 2016, 4, 6988–6995.

[225]

Atif, R.; Khaliq, J.; Combrinck, M.; Hassanin, A. H.; Shehata, N.; Elnabawy, E.; Shyha, I. Solution blow spinning of polyvinylidene fluoride based fibers for energy harvesting applications: A review. Polymers 2020, 12, 1304.

[226]

Liu, R. Q.; Wang, X. X.; Fu, J.; Zhang, Q. Q.; Song, W. Z.; Xu, Y.; Chen, Y. Q.; Ramakrishna, S.; Long, Y. Z. Preparation of nanofibrous PVDF membrane by solution blow spinning for mechanical energy harvesting. Nanomaterials 2019, 9, 1090.

[227]

Elnabawy, E.; Farag, M.; Soliman, A.; Mahmoud, K.; Shehata, N.; Nair, R.; Kandas, I.; Atif, R.; Combrinck, M.; Khaliq, J. et al. Solution blow spinning of piezoelectric nanofiber mat for detecting mechanical and acoustic signals. J. Appl. Polym. Sci. 2021, 138, e51322.

[228]

Omran, N.; Elnabawy, E.; Le, B.; Trabelsi, M.; Gamal, M.; Kandas, I.; Hassanin, A. H.; Shyha, I.; Shehata, N. Solution blow spun piezoelectric nanofibers membrane for energy harvesting applications. React. Funct. Polym. 2022, 179, 105365.

[229]

Cholleti, E. R. A review on 3D printing of piezoelectric materials. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 455, 012046.

[230]

Mahmud, M. A. P.; Adhikary. P.; Zolfagharian, A.; Adams, S.; Kaynak, A.; Kouzani, A. Z. Advanced design, fabrication, and applications of 3D-printable piezoelectric nanogenerators. Electron. Mater. Lett. 2022, 18, 129–144.

[231]

Megdich, A.; Habibi, M.; Laperrière, L. A review on 3D printed piezoelectric energy harvesters: Materials, 3D printing techniques, and applications. Mater. Today Commun. 2023, 35, 105541.

[232]

Kim, H.; Torres, F.; Wu, Y. Y.; Villagran, D.; Lin, Y. R.; Tseng, T. L. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 2017, 26, 085027.

[233]

Bodkhe, S.; Turcot, G.; Gosselin, F. P.; Therriault, D. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 2017, 9, 20833–20842.

[234]

Yuan, X. T.; Yan, A.; Lai, Z. W.; Liu, Z. H.; Yu, Z. H.; Li, Z. M.; Cao, Y.; Dong, S. X. A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. Nano Energy 2022, 98, 107340.

[235]

Zhou, X. R.; Parida, K.; Halevi, O.; Liu, Y. Z.; Xiong, J. Q.; Magdassi, S.; Lee, P. S. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 2020, 72, 104676.

[236]

Wu, W. W.; Bai, S.; Yuan, M. M.; Qin, Y.; Wang, Z. L.; Jing, T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 2012, 6, 6231–6235.

[237]

Almusallam, A.; Luo, Z. H.; Komolafe, A.; Yang, K.; Robinson, A.; Torah, R.; Beeby, S. Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy 2017, 33, 146–156.

[238]

He, S. B.; Dong, W.; Guo, Y. P.; Guan, L.; Xiao, H. Y.; Liu, H. Z. Piezoelectric thin film on glass fiber fabric with structural hierarchy: An approach to high-performance, superflexible, cost-effective, and large-scale nanogenerators. Nano Energy 2019, 59, 745–753.

[239]

Kim, H.; Kim, S. M.; Son, H.; Kim, H.; Park, B.; Ku, J.; Sohn, J. I.; Im, K.; Jang, J. E.; Park, J. J. et al. Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energy Environ. Sci. 2012, 5, 8932–8936.

[240]

Khan, A.; Abbasi, M. A.; Hussain, M.; Ibupoto, Z. H.; Wissting, J.; Nur, O.; Willander, M. Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl. Phys. Lett. 2012, 101, 193506.

[241]

Zhang, Z.; Chen, Y.; Guo, J. S. ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Phys. E: Low-Dimens. Syst. Nanostruct. 2019, 105, 212–218.

[242]

Bai, S.; Zhang, L.; Xu, Q.; Zheng, Y. B.; Qin, Y.; Wang, Z. L. Two dimensional woven nanogenerator. Nano Energy 2013, 2, 749–753.

[243]

Zhang, M.; Gao, T.; Wang, J. S.; Liao, J. J.; Qiu, Y. Q.; Yang, Q.; Xue, H.; Shi, Z.; Zhao, Y.; Xiong, Z. X. et al. A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 2015, 13, 298–305.

[244]

Zhou, Y. M.; He, J. X.; Wang, H. B.; Qi, K.; Nan, N.; You, X. L.; Shao, W. L.; Wang, L. D.; Ding, B.; Cui, S. Z. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Sci. Rep. 2017, 7, 12949.

[245]

Talbourdet, A.; Rault, F.; Lemort, G.; Cochrane, C.; Devaux, E.; Campagne, C. 3D interlock design 100% PVDF piezoelectric to improve energy harvesting. Smart Mater. Struct. 2018, 27, 075010.

[246]

Wu, S. Y.; Zabihi, F.; Yeap, R. Y.; Darestani, M. R. Y.; Bahi, A.; Wan, Z. Y.; Yang, S. Y.; Servati, P.; Ko, F. K. Cesium lead halide perovskite decorated polyvinylidene fluoride nanofibers for wearable piezoelectric nanogenerator yarns. ACS Nano 2023, 17, 1022–1035.

[247]

Khalifa, M.; Anandhan, S. PVDF nanofibers with embedded polyaniline-graphitic carbon nitride nanosheet composites for piezoelectric energy conversion. ACS Appl. Nano Mater. 2019, 2, 7328–7339.

[248]

Yang, E. L.; Xu, Z.; Chur, L. K.; Behroozfar, A.; Baniasadi, M.; Moreno, S.; Huang, J. C.; Gilligan, J.; Minary-Jolandan, M. Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer. ACS Appl. Mater. Interfaces 2017, 9, 24220–24229.

[249]

Sim, H. J.; Choi, C.; Lee, C. J.; Kim, Y. T.; Spinks, G. M.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible, stretchable and weavable piezoelectric fiber. Adv. Eng. Mater. 2015, 17, 1270–1275.

[250]

Liu, J.; Yang, B.; Lu, L. J.; Wang, X. L.; Li, X. Y.; Chen, X.; Liu, J. Q. Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sens. Actuator A: Phys. 2020, 303, 111796.

[251]

Zhao, C. X.; Niu, J.; Zhang, Y. Y.; Li, C.; Hu, P. H. Coaxially aligned MWCNTs improve performance of electrospun P(VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator. Compos. B: Eng. 2019, 178, 107447.

[252]

Adhikary, P.; Biswas, A.; Mandal, D. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition. Nanotechnology 2016, 27, 495501.

[253]

Lee, S. H.; Choi, Y. C.; Kim, M. S.; Ryu, K. M.; Jeong, Y. G. Fabrication and characterization of piezoelectric composite nanofibers based on poly(vinylidene fluoride-co-hexafluoropropylene) and barium titanate nanoparticle. Fibers Polym. 2020, 21, 473–479.

[254]

Ghosh, S. K.; Mandal, D. Efficient natural piezoelectric nanogenerator: Electricity generation from fish swim bladder. Nano Energy 2016, 28, 356–365.

[255]

Sencadas, V.; Garvey, C.; Mudie, S.; Kirkensgaard, J. J. K.; Gouadec, G.; Hauser, S. Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy 2019, 66, 104106.

[256]

Sultana, A.; Ghosh, S. K.; Sencadas, V.; Zheng, T.; Higgins, M. J.; Middyal, T. R.; Manda, D. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-L-lactic acid nanofibers for non-invasive physiological signal monitoring. J. Mater. Chem. B 2017, 5, 7352–7359.

[257]

Oh, H. J.; Kim, D. K.; Choi, Y. C.; Lim, S. J.; Jeong, J. B.; Ko, J. H.; Hahm, W. G.; Kim, S. W.; Lee, Y.; Kim, H. et al. Fabrication of piezoelectric poly(L-lactic acid)/BaTiO3 fibre by the melt-spinning process. Sci. Rep. 2020, 10, 16339.

[258]

Wang, L. Y.; Cheng, T.; Lian, W. W.; Zhang, M. X.; Lu, B.; Dong, B. B.; Tan, K. L.; Liu, C. T.; Shen, C. Y. Flexible layered cotton cellulose-based nanofibrous membranes for piezoelectric energy harvesting and self-powered sensing. Carbohydr. Polym. 2022, 275, 118740.

[259]

Anwar, S.; Amiri, M. H.; Jiang, S.; Abolhasani, M. M.; Rocha, P. R. F.; Asadi, K. Piezoelectric nylon-11 fibers for electronic textiles, energy harvesting and sensing. Adv. Funct. Mater. 2021, 31, 2004326.

[260]

Jiang, F.; Zhou, X. R.; Lv, J.; Chen, J.; Chen, J. T.; Kongcharoen, H.; Zhang, Y. H.; Lee, P. S. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv. Mater. 2022, 34, 2200042.

[261]

Singh, H. H.; Singh, S.; Khare, N. Enhanced β-phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym. Adv. Technol. 2018, 29, 143–150.

[262]

Parangusan, H.; Ponnamma, D.; AlMaadeed, M. A. A. Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe-ZnO nanocomposites for self-powering devices. Soft Matter 2018, 14, 8803–8813.

[263]

Li, J. J.; Chen, S.; Liu, W. T.; Fu, R. F.; Tu, S. J.; Zhao, Y. H.; Dong, L. Q.; Yan, B.; Gu, Y. C. High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly(vinylidene fluoride) composite membranes. J. Phys. Chem. C 2019, 123, 11378–11387.

[264]

Ongun, M. Z.; Oguzlar, S.; Kartal, U.; Yurddaskal, M.; Cihanbegendi, O. Energy harvesting nanogenerators: Electrospun β-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs. Solid State Sci. 2021, 122, 106772.

[265]

Yadav, P.; Raju, T. D.; Badhulika, S. Self-poled hBN-PVDF nanofiber mat-based low-cost, ultrahigh-performance piezoelectric nanogenerator for biomechanical energy harvesting. ACS Appl. Electron. Mater. 2020, 2, 1970–1980.

[266]

Eun, J. H.; Sung, S. M.; Kim, M. S.; Choi, B. K.; Lee, J. S. Effect of MWCNT content on the mechanical and piezoelectric properties of PVDF nanofibers. Mater. Des. 2021, 206, 109785.

[267]

Roy, K.; Ghosh, S. K.; Sultana, A.; Garain, S.; Xie, M. Y.; Bowen, C. R.; Henkel, K.; Schmeiβer, D.; Mandal, D. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2019, 2, 2013–2025.

[268]

Yang, J.; Zhang, Y. H.; Li, Y. N.; Wang, Z. H.; Wang, W. J.; An, Q.; Tong, W. S. Piezoelectric nanogenerators based on graphene oxide/PVDF electrospun nanofiber with enhanced performances by in-situ reduction. Mater. Today Commun. 2021, 26, 101629.

[269]

Nardekar, S. S.; Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Kim, S. J. MoS2 quantum sheets-PVDF nanocomposite film based self-poled piezoelectric nanogenerators and photovoltaically self-charging power cell. Nano Energy 2022, 93, 106869.

[270]

Faraz, M.; Singh, H. H.; Khare, N. A progressive strategy for harvesting mechanical energy using flexible PVDF-rGO-MoS2 nanocomposites film-based piezoelectric nanogenerator. J. Alloys Compd. 2022, 890, 161840.

[271]

Roy, K.; Jana, S.; Ghosh, S. K.; Mahanty, B.; Mallick, Z.; Sarkar, S.; Sinha, C.; Mandal, D. Three-dimensional MOF-assisted self-polarized ferroelectret: An effective autopowered remote healthcare monitoring approach. Langmuir 2020, 36, 11477–11489.

[272]

Roy, K.; Jana, S.; Mallick, Z.; Ghosh, S. K.; Dutta, B.; Sarkar, S.; Sinha, C.; Mandal, D. Two-dimensional MOF modulated fiber nanogenerator for effective acoustoelectric conversion and human motion detection. Langmuir 2021, 37, 7107–7117.

[273]

Zhang, D. D.; Zhang, X. L.; Li, X. J.; Wang, H. P.; Sang, X. D.; Zhu, G. D.; Yeung, Y. Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator. Eur. Polym. J. 2022, 166, 110956.

[274]

Athira, B. S.; George, A.; Priya, K. V.; Hareesh, U. S.; Gowd, E. B.; Surendran, K. P.; Chandran, A. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO3 nanofibers for self-powered vibration sensing applications. ACS Appl. Mater. Interfaces 2022, 14, 44239–44250.

[275]

Shia, K. M.; Sun, B.; Huang, X. Y.; Jiang, P. K. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 2018, 52, 153–162.

[276]

Li, Y. Y.; Hu, Q.; Zhang, R.; Ma, W. M.; Pan, S. W.; Zhao, Y. H.; Wang, Q.; Fang, P. F. Piezoelectric nanogenerator based on electrospinning PVDF/cellulose acetate composite membranes for energy harvesting. Materials 2022, 15, 7026.

[277]

Fu, R. F.; Chen, S.; Lin, Y.; Zhang, S. H.; Jiang, J.; Li, Q. B.; Gu, Y. C. Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals. Mater. Lett. 2017, 187, 86–88.

[278]

Wu, L. K.; Huang, G. W.; Hu, N.; Fu, S. Y.; Qiu, J. H.; Wang, Z. C.; Ying, J.; Chen, Z. C.; Li, W. G.; Tang, S. Improvement of the piezoelectric properties of PVDF-HFP using AgNWs. RSC Adv. 2014, 4, 35896–35903.

[279]

Adhikary, P.; Garain, S.; Mandal, D. The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: An effective piezoelectric based energy harvester. Phys. Chem. Chem. Phys. 2015, 17, 7275–7281.

[280]

Parangusan, H.; Ponnamma, D.; Al-Maadeed, M. A. A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 2018, 8, 754.

[281]

Parangusan, H.; Bhadra, J.; Al-Thani, N. Flexible piezoelectric nanogenerator based on [P(VDF-HFP)]/PANI-ZnS electrospun nanofibers for electrical energy harvesting. J. Mater. Sci.: Mater. Electron. 2021, 32, 6358–6368.

[282]

Fu, J.; Hou, Y. D.; Gao, X.; Zheng, M. P.; Zhu, M. K. Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy 2018, 52, 391–401.

[283]

Kharade, J.; Vasquez, H.; Lozano, K. Enhanced piezoelectric performance of aligned PVDF electrospun fiber mats. Emergent Mater. 2022, 5, 187–193.

[284]

Jiang, Y. J.; Deng, Y. J.; Qi, H. Y. Microstructure dependence of output performance in flexible PVDF piezoelectric nanogenerators. Polymers 2021, 13, 3252.

[285]

Liu, Y. Z.; Huang, Z. Y.; Liu, C. Improved design via simulation of micro-modified PVDF and its copolymer energy harvester with high electrical outputs. Sensors 2020, 20, 5834.

[286]

Su, Y. J.; Li, W. X.; Yuan, L.; Chen, C. X.; Pan, H.; Xie, G. Z.; Conta, G.; Ferrier, S.; Zhao, X.; Chen, G. R. et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021, 89, 106321.

[287]

Su, Y. J.; Li, W. X.; Cheng, X. X.; Zhou, Y. H.; Yang, S.; Zhang, X.; Chen, C. X.; Yang, T. N.; Pan, H.; Xie, G. Z. et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867.

[288]

Yin, X. Q.; Lallart, M.; Cottinet, P. J.; Guyomar, D.; Capsal, J. F. Mechanical energy harvesting via a plasticizer-modified electrostrictive polymer. Appl. Phys. Lett. 2016, 108, 042901.

[289]

Šutka, A.; Sherrell, P. C.; Shepelin, N. A.; Lapčinskis, L.; Mālnieks, K.; Ellis, A. V. Measuring piezoelectric output-fact or friction? Adv. Mater. 2020, 32, 2002979.

[290]

Lee, B. Y.; Zhang, J. X.; Zueger, C.; Chung, W. J.; Yoo, S. Y.; Wang, E.; Meyer, J.; Ramesh, R.; Lee, S. W. Virus-based piezoelectric energy generation. Nat. Nanotechnol. 2012, 7, 351–356.

[291]

He, L. R.; Lu, J.; Han, C.; Liu, X. G.; Liu, J. F.; Zhang, C. H. Electrohydrodynamic pulling consolidated high-efficiency 3D printing to architect unusual self-polarized β-PVDF arrays for advanced piezoelectric sensing. Small 2022, 18, 2200114.

[292]

Gao, M. Y.; Yao, Y.; Wang, Y. F.; Wang, B. W.; Wang, P.; Wang, Y.; Dai, J.; Liu, S.; Torres, J. F.; Cheng, W. L. et al. Wearable power management system enables uninterrupted battery-free data-intensive sensing and transmission. Nano Energy 2023, 107, 108107.

[293]

Zhao, J. J.; You, Z. A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 2014, 14, 12497–12510.

Nano Research Energy
Article number: e9120076
Cite this article:
Alam MM, Crispin X. The past, present, and future of piezoelectric fluoropolymers: Towards efficient and robust wearable nanogenerators. Nano Research Energy, 2023, 2: e9120076. https://doi.org/10.26599/NRE.2023.9120076

2606

Views

614

Downloads

9

Crossref

9

Scopus

Altmetrics

Received: 25 October 2022
Revised: 29 March 2023
Accepted: 21 April 2023
Published: 14 June 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return