AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In-situ fabrication of carbon compound NiFeMo-P anchored on nickel foam as bi-functional catalyst for boosting overall water splitting

Xiangyang ZhouTingting YangTing LiYouju ZiSijing ZhangLei YangYingkang LiuJuan YangJingjing Tang( )
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

The carbon compound NiFeMo-P anchored on nickel foam (NiFeMo-P-C) was successfully constructed via hydrothermal and hydrogen reduction methods. The synergistic effect between alloy and metal phosphide, as well as the carbon composition and partially broken hollow morphology, allowing for much higher oxygen evolution reaction (OER)/hydrogen evolution reaction (HER) activity and superior stability.

Abstract

The efficient non-noble metal-based bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has attracted great interest, which is highly significant to enhance the efficiency of hydrogen production from water electrolysis. Herein, inspired by the appropriate hydrogen adsorption free energy of transition metal alloy and the strong corrosion resistance of phosphide in alkaline electrolyte, carbon compound NiFeMo-P anchored on nickel foam (NiFeMo-P-C) is obtained by simple one-pot hydrothermal and subsequent hydrogen reduction treatment. Remarkably, the NiFeMo-P-C exhibits excellent bifunctional electrocatalytic performances toward HER and OER with low overpotentials of 87 and 196 mV at 10 mA·cm–2, respectively. Moreover, the electrolyzer using NiFeMo-P-C as both cathode and anode only requires a cell voltage of 1.50 V to reach a current density of 10 mA·cm–2, along with an outstanding long-term stability for 50 h. The synergistic effect among alloys and phosphide, partially broken hollow morphology and porous nickel foam substrate jointly impart NiFeMo-P-C high electrocatalytic activity and superior durability.

Electronic Supplementary Material

Download File(s)
0086_ESM.pdf (2.8 MB)

References

[1]

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

[2]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[3]

Luo, F.; Hu, H.; Zhao, X.; Yang, Z. H.; Zhang, Q.; Xu, J. X.; Kaneko, T.; Yoshida, Y.; Zhu, C. Z.; Cai, W. W. Robust and stable acidic overall water splitting on Ir single atoms. Nano Lett 2020, 20, 2120–2128.

[4]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[5]

Wang, J. J.; Yue, X. Y.; Yang, Y. Y.; Sirisomboonchai, S.; Wang, P. F.; Ma, X. L.; Abudula, A.; Guan, G. Q. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. J. Alloys Compd 2020, 819, 153346.

[6]

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed 2017, 56, 842–846.

[7]

He, L. G.; Cheng, P. Y.; Cheng, C. C.; Huang, C. L.; Hsieh, C. T.; Lu, S. Y. (NixFeyCo6–xy)Mo6C cuboids as outstanding bifunctional electrocatalysts for overall water splitting. Appl. Catal. B Environ 2021, 290, 120049.

[8]

Zheng, D. H.; Jing, Z. X.; Zhao, Q. Y.; Kim, Y.; Li, P.; Xu, H. Z.; Li, Z. F.; Lin, J. J. Efficient Co-doped pyrrhotite Fe0.95S1.05 nanoplates for electrochemical water splitting. Chem. Eng. J 2020, 402, 125069.

[9]

Wang, C. Y.; Schechter, A.; Feng, L. G. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2023, 2, e9120056.

[10]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater 2020, 32, 1806326.

[11]

Li, C. F.; Zhao, J. W.; Xie, L. J.; Wu, J. Q.; Li, G. R. Fe doping and oxygen vacancy modulated Fe-Ni5P4/NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B Environ 2021, 291, 119987.

[12]

Zhang, X.; Fan, J. J.; Lu, X. Y.; Han, Z. J.; Cazorla, C.; Hu, L.; Wu, T.; Chu, D. W. Bridging NiCo layered double hydroxides and Ni3S2 for bifunctional electrocatalysts: The role of vertical graphene. Chem. Eng. J 2021, 415, 129048.

[13]

You, B.; Jiang, N.; Sheng, M. L.; Bhushan, M. W.; Sun, Y. J. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal 2016, 6, 714–721.

[14]

Yan, Y. T.; Bao, K.; Liu, T.; Cao, J.; Feng, J. C.; Qi, J. L. Minutes periodic wet chemistry engineering to turn bulk Co-Ni foam into hydroxide based nanosheets for efficient water decomposition. Chem. Eng. J 2020, 401, 126092.

[15]

Sun, H.; Chen, L.; Lian, Y. B.; Yang, W. J.; Lin, L.; Chen, Y. F.; Xu, J. B.; Wang, D.; Yang, X. Q.; Rümmerli, M. H. et al. Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation. Adv. Mater 2020, 32, 2006784.

[16]

Zeng, Y.; Cao, Z.; Liao, J. Z.; Liang, H. F.; Wei, B. B.; Xu, X.; Xu, H. W.; Zheng, J. X.; Zhu, W. J.; Cavallo, L. et al. Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B Environ 2021, 292, 120160.

[17]

Qin, F.; Zhao, Z. H.; Alam, M. K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett 2018, 3, 546–554.

[18]

Jin, Y. S.; Yue, X.; Shu, C.; Huang, S. L.; Shen, P. K. Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2017, 5, 2508–2513.

[19]

Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Sun, X. P.; He, Y. Q.; Asiri, A. M. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 2015, 3, 20056–20059.

[20]

Liu, M. Z.; Sun, Z.; Li, S. Y.; Nie, X. W.; Liu, Y. F.; Wang, E. D.; Zhao, Z. K. Hierarchical superhydrophilic/superaerophobic CoMnP/Ni2P nanosheet-based microplate arrays for enhanced overall water splitting. J. Mater. Chem. A 2021, 9, 22129–22139.

[21]

Chai, L.; Liu, S. L.; Pei, S. T.; Wang, C. Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting. Chem. Eng. J 2021, 420, 129686.

[22]

Chen, D.; Bai, H. W.; Zhu, J. W.; Wu, C.; Zhao, H. Y.; Wu, D. L.; Jiao, J. X.; Ji, P. X.; Mu, S. C. Multiscale hierarchical structured NiCoP enabling ampere-level water splitting for multi-scenarios green energy-to-hydrogen systems. Adv. Energy Mater 2023, 13, 2300499.

[23]

Bai, H. W.; Chen, D.; Ma, Q. L.; Qin, R.; Xu, H. W.; Zhao, Y. F.; Chen, J. X.; Mu, S. C. Atom doping engineering of transition metal phosphides for hydrogen evolution reactions. Electrochem. Energy Rev 2022, 5, 24.

[24]

Wang, Y.; Li, X. P.; Zhang, M. M.; Zhou, Y. G.; Rao, D. W.; Zhong, C.; Zhang, J. F.; Han, X. P.; Hu, W. B.; Zhang, Y. C. et al. Lattice-strain engineering of homogeneous NiS0.5Se0.5 core-shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv. Mater 2020, 32, 2000231.

[25]

Jin, C. Q.; Zhai, P. B.; Wei, Y.; Chen, Q.; Wang, X. G.; Yang, W. W.; Xiao, J.; He, Q. Q.; Liu, Q. Y.; Gong, Y. J. Ni(OH)2 templated synthesis of ultrathin Ni3S2 nanosheets as bifunctional electrocatalyst for overall water splitting. Small 2021, 17, 2102097.

[26]

Zhu, Z. F.; Hao, J. C.; Zhu, H.; Sun, S. H.; Duan, F.; Lu, S. L.; Du, M. L. In situ fabrication of electrospun carbon nanofibers-binary metal sulfides as freestanding electrode for electrocatalytic water splitting. Adv. Fiber Mater 2021, 3, 117–127.

[27]

Diao, J. X.; Li, X. L.; Wang, S. Y.; Zhao, Z. J.; Wang, W. T.; Chen, K.; Chen, X. T.; Chao, T. T.; Yang, Y. Promoting water splitting on arrayed molybdenum carbide nanosheets with electronic modulation. J. Mater. Chem. A 2021, 9, 21440–21447.

[28]

Zhang, Y. L.; Yang, J. F.; Yu, Z. B.; Hou, Y. P.; Jiang, R. H.; Huang, J.; Yang, F.; Yao, S. Q.; Gao, L. H.; Tang, W. J. Modulating carbon-supported transition metal oxide by electron-giving and electron-absorbing functional groups towards efficient overall water splitting. Chem. Eng. J 2021, 416, 129124.

[29]

Zhang, J. H.; Xu, Q. C.; Wang, J. Y.; Li, Y. H.; Jiang, H.; Li, C. Z. Dual-defective Co3O4 nanoarrays enrich target intermediates and promise high-efficient overall water splitting. Chem. Eng. J 2021, 424, 130328.

[30]

Shalom, M.; Ressnig, D.; Yang, X. F.; Clavel, G.; Fellinger, T. P.; Antonietti, M. Nickel nitride as an efficient electrocatalyst for water splitting. J. Mater. Chem. A 2015, 3, 8171–8177.

[31]

Wen, Y.; Qi, J. Y.; Wei, P. C.; Kang, X.; Li, X. Design of Ni3N/Co2N heterojunctions for boosting electrocatalytic alkaline overall water splitting. J. Mater. Chem. A 2021, 9, 10260–10269.

[32]

Ren, Y. C.; Li, Z. R.; Deng, B.; Ye, C.; Zhang, L. C.; Wang, Y.; Li, T. S.; Liu, Q.; Cui, G. W.; Asiri, A. M. et al. Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. Int. J. Hydrogen Energy 2022, 47, 3580–3586.

[33]

Zhang, Q.; Li, P. S.; Zhou, D. J.; Chang, Z.; Kuang, Y.; Sun, X. M. Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 2017, 13, 1701648.

[34]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun 2017, 8, 15437.

[35]

Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater 2019, 31, 1903909.

[36]

Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J. et al. Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy 2021, 81, 105606.

[37]

Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed 2015, 54, 6251–6254.

[38]

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett 2017, 2, 1937–1938.

[39]

Yu, Z. Q.; Wang, Y.; Sun, Z. C.; Li, X.; Wang, A. J.; Camaioni, D. M.; Lercher, J. A. Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chem 2018, 20, 609–619.

[40]

Liang, L. L.; Song, G.; Chen, J. P.; Liu, Z.; Jia, H.; Kong, Q. Q.; Sun, G. H.; Chen, C. M. Crystalline-amorphous Ni3P@Nix(POy)z core-shell heterostructures as corrosion-resistant and high-efficiency microwave absorbents. Appl. Surf. Sci 2021, 542, 148608.

[41]

Yuan, B. B.; Sun, F. Z.; Li, C. Q.; Huang, W.; Lin, Y. Q. Formation of Prussian blue analog on Ni foam via in-situ electrodeposition method and conversion into Ni-Fe-mixed phosphates as efficient oxygen evolution electrode. Electrochim. Acta 2019, 313, 91–98.

[42]

Paudel, D. R.; Pan, U. N.; Singh, T. I.; Gudal, C. C.; Kim, N. H.; Lee, J. H. Fe and P doped 1T-phase enriched WS2 3D-dendritic nanostructures for efficient overall water splitting. Appl. Catal. B Environ 2021, 286, 119897.

[43]

Wang, X. G.; Li, W.; Xiong, D. H.; Liu, L. F. Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. J. Mater. Chem. A 2016, 4, 5639–5646.

[44]

Luo, X.; Tan, X.; Ji, P. X.; Chen, L.; Yu, J.; Mu, S. C. Surface reconstruction-derived heterostructures for electrochemical water splitting. EnergyChem 2023, 5, 100091.

[45]

Li, W.; Xiong, D. H.; Gao, X. F.; Liu, L. F. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem. Commun 2019, 55, 8744–8763.

[46]

Qian, H. X.; Li, K. Y.; Mu, X. B.; Zou, J. Z.; Xie, S. H.; Xiong, X. B.; Zeng, X. R. Nanoporous NiFeMoP alloy as a bifunctional catalyst for overall water splitting. Int. J. Hydrogen Energy 2020, 45, 16447–16457.

[47]

Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater 2015, 25, 7337–7347.

[48]

Zhou, X. Y.; Zi, Y. J.; Xu, L.; Li, T.; Yang, J.; Tang, J. J. Core-shell-structured Prussian blue analogues ternary metal phosphides as efficient bifunctional electrocatalysts for OER and HER. Inorg. Chem 2021, 60, 11661–11671.

[49]

Choi, J.; Kim, D.; Zheng, W. R.; Yan, B. Y.; Li, Y.; Lee, L. Y. S.; Piao, Y. Interface engineered NiFe2O4–x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Appl. Catal. B Environ 2021, 286, 119857.

Nano Research Energy
Pages e9120086-e9120086
Cite this article:
Zhou X, Yang T, Li T, et al. In-situ fabrication of carbon compound NiFeMo-P anchored on nickel foam as bi-functional catalyst for boosting overall water splitting. Nano Research Energy, 2023, 2: e9120086. https://doi.org/10.26599/NRE.2023.9120086

4684

Views

1390

Downloads

22

Crossref

23

Scopus

Altmetrics

Received: 20 April 2023
Revised: 02 June 2023
Accepted: 21 June 2023
Published: 07 July 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return