Polymer solar cells (PSCs) with high power conversion efficiency (PCE) and environment-friendly fabrication are the main requirements enabling their production in industrial scale. While the use of non-halogenated solvent processing is inevitable for the PSC fabrication, it significantly reduces the processability of polymer donors (PDS) and small-molecule acceptors (SMAs). This often results in unoptimized blend morphology and limits the device performance. To address this issue, hydrophilic oligoethylene glycol (OEG) side-chains are introduced into a PD (2EG) to enhance the molecular compatibility between the PD and L8-BO SMA. The 2EG PD induces higher crystallinity and alleviates phase separation with the SMA compared to the reference PD (PM7) with hydrocarbon side-chains. Consequently, the 2EG-based PSCs exhibit a higher PCE (15.8%) than the PM7-based PSCs (PCE = 14.4%) in the ortho-xylene based processing. Importantly, benefitted from the reduced phase separation and increased crystallinity of 2EG PDS, the 2EG-based PSCs show enhanced thermal stability (84% of initial PCE after 120 h heating) compared to that of the PM7-based PSCs (60% of initial PCE after 120 h heating). This study demonstrates the potential of OEG side-chain-incorporated materials in developing efficient, stable, and eco-friendly PSCs.
Li, Y. W.; Xu, G. Y.; Cui, C. H.; Li, Y. F. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791.
Du, X. Y.; Lüer, L.; Heumueller, T.; Wagner, J.; Berger, C.; Osterrieder, T.; Wortmann, J.; Langner, S.; Vongsaysy, U.; Bertrand, M. et al. Elucidating the full potential of OPV materials utilizing a high-throughput robot-based platform and machine learning. Joule 2021, 5, 495–506.
Chen, S. S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J. Q.; Oh, J.; Cho, Y.; Kim, H.; Lee, B. et al. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices. Angew. Chem., Int. Ed. 2018, 57, 13277–13282.
Liu, T.; Yang, T.; Ma, R. J.; Zhan, L. L.; Luo, Z. H.; Zhang, G. Y.; Li, Y.; Gao, K.; Xiao, Y. Q.; Yu, J. W. et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule 2021, 5, 914–930.
Benten, H.; Mori, D.; Ohkita, H.; Ito, S. Recent research progress of polymer donor/polymer acceptor blend solar cells. J. Mater. Chem. A 2016, 4, 5340–5365.
Zhang, G. Y.; Ning, H. J.; Chen, H.; Jiang, Q. J.; Jiang, J. Q.; Han, P. W.; Dang, L.; Xu, M. C.; Shao, M.; He, F. et al. Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency. Joule 2021, 5, 931–944.
Sun, C.; Lee, J. W.; Lee, C.; Lee, D.; Cho, S.; Kwon, S. K.; Kim, B. J.; Kim, Y. H. Dimerized small-molecule acceptors enable efficient and stable organic solar cells. Joule 2023, 7, 416–430.
Li, C.; Zhou, J. D.; Song, J. L.; Xu, J. Q.; Zhang, H. T.; Zhang, X. N.; Guo, J.; Zhu, L.; Wei, D. H.; Han, G. C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.
Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.
Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.
Wang, J. W.; Cui, Y.; Xu, Y.; Xian, K. H.; Bi, P. Q.; Chen, Z. H.; Zhou, K. K.; Ma, L. J.; Zhang, T.; Yang, Y. et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Adv. Mater. 2022, 34, 2205009.
Shao, Y. M.; Gao, Y.; Sun, R.; Zhang, M. M.; Min, J. A versatile and low-cost polymer donor based on 4-chlorothiazole for highly efficient polymer solar cells. Adv. Mater. 2023, 35, 2208750.
Wei, Y. N.; Chen, Z. H.; Lu, G. Y.; Yu, N.; Li, C. Q.; Gao, J. H.; Gu, X. B.; Hao, X. T.; Lu, G. H.; Tang, Z. et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 2022, 34, 2204718.
Zhang, T.; An, C. B.; Cui, Y.; Zhang, J. Q.; Bi, P. Q.; Yang, C. Y.; Zhang, S. Q.; Hou, J. H. A universal nonhalogenated polymer donor for high-performance organic photovoltaic cells. Adv. Mater. 2022, 34, 2105803.
Wang, J. X.; Han, C. Y.; Bi, F. Z.; Huang, D.; Wu, Y. W.; Li, Y. H.; Wen, S. G.; Han, L. L.; Yang, C. M.; Bao, X. C. et al. Overlapping fasten packing enables efficient dual-donor ternary organic solar cells with super stretchability. Energy Environ. Sci. 2021, 14, 5968–5978.
Yu, H.; Wang, Y.; Kim, H. K.; Wu, X.; Li, Y. H.; Yao, Z. F.; Pan, M. G.; Zou, X. H.; Zhang, J. Q.; Chen, S. S. et al. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency. Adv. Mater. 2022, 34, 2200361.
Tang, A. L.; Zhan, C. L.; Yao, J. N.; Zhou, E. J. Design of diketopyrrolopyrrole (DPP)-based small molecules for organic-solar-cell applications. Adv. Mater. 2017, 29, 1600013.
Lai, H. J.; Zhao, Q. Q.; Chen, Z. Y.; Chen, H.; Chao, P. J.; Zhu, Y. L.; Lang, Y. W.; Zhen, N.; Mo, D. Z.; Zhang, Y. Z. et al. Trifluoromethylation enables a 3D interpenetrated low-band-gap acceptor for efficient organic solar cells. Joule 2020, 4, 688–700.
Jung, H.; Jung, A. R.; Jin, S. M.; Kim, S.; Heo, H.; Van T. Nguyen, H.; Kim, M. J.; Ahn, P.; Kim, M. H.; Lee, Y. et al. Influence of 3D morphology on the performance of all-polymer solar cells processed using environmentally benign nonhalogenated solvents. Nano Energy 2020, 77, 105106.
Henderson, R. K.; Jiménez-González, C.; Constable, D. J. C.; Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.; Curzons, A. D. Expanding GSK’s solvent selection guide-embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011, 13, 854–862.
Ma, Z. W.; Zhao, B.; Gong, Y. S.; Deng, J. P.; Tan, Z. A. Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics. J. Mater. Chem. A 2019, 7, 22826–22847.
Huang, Y. P.; Luscombe, C. K. Towards green synthesis and processing of organic solar cells. Chem. Rec. 2019, 19, 1039–1049.
Zhang, S. Q.; Ye, L.; Zhang, H.; Hou, J. H. Green-solvent-processable organic solar cells. Mater. Today 2016, 19, 533–543.
Lee, S.; Jeong, D.; Kim, C.; Lee, C.; Kang, H.; Woo, H. Y.; Kim, B. J. Eco-friendly polymer solar cells: Advances in green-solvent processing and material design. ACS Nano 2020, 14, 14493–14527.
McDowell, C.; Bazan, G. C. Organic solar cells processed from green solvents. Curr. Opin. Green Sustainable Chem. 2017, 5, 49–54.
Li, H. J.; Liu, S. Q.; Wu, X. T.; Yao, S. Y.; Hu, X. T.; Chen, Y. W. Advances in the device design and printing technology for eco-friendly organic photovoltaics. Energy Environ. Sci. 2023, 16, 76–88.
Liu, B.; Sun, H. L.; Lee, J. W.; Yang, J.; Wang, J. W.; Li, Y. C.; Li, B. B.; Xu, M.; Liao, Q. G.; Zhang, W. et al. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy Environ. Sci. 2021, 14, 4499–4507.
Xue, J. W.; Zhao, H.; Lin, B. J.; Wang, Y. L.; Zhu, Q. L.; Lu, G. Y.; Wu, B. H.; Bi, Z. Z.; Zhou, X. B.; Zhao, C. et al. Nonhalogenated dual-slot-die processing enables high-efficiency organic solar cells. Adv. Mater. 2022, 34, 2202659.
Pang, S. T.; Chen, Z. L.; Li, J. Y.; Chen, Y. T.; Liu, Z. T.; Wu, H. B.; Duan, C. H.; Huang, F.; Cao, Y. High-efficiency organic solar cells processed from a real green solvent. Mater. Horiz. 2023, 10, 473–482.
Lu, H.; Wang, H.; Ran, G. L.; Li, S.; Zhang, J. Q.; Liu, Y. H.; Zhang, W. K.; Xu, X. J.; Bo, Z. S. Random terpolymer enabling high-efficiency organic solar cells processed by nonhalogenated solvent with a low nonradiative energy loss. Adv. Funct. Mater. 2022, 32, 2203193.
Chen, H. Y.; Zhang, R.; Chen, X. B.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W. J.; Xu, G. Y.; Oh, J. et al. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 2021, 6, 1045–1053.
Duong, D. T.; Walker, B.; Lin, J.; Kim, C.; Love, J.; Purushothaman, B.; Anthony, J. E.; Nguyen, T. Q. Molecular solubility and hansen solubility parameters for the analysis of phase separation in bulk heterojunctions. J. Polym. Sci. Part B: Polym. Phys. 2012, 50, 1405–1413.
Lee, C.; Li, Y. X.; Lee, W.; Lee, Y.; Choi, J.; Kim, T.; Wang, C.; Gomez, E. D.; Woo, H. Y.; Kim, B. J. Correlation between phase-separated domain sizes of active layer and photovoltaic performances in all-polymer solar cells. Macromolecules 2016, 49, 5051–5058.
Lee, T.; Oh, S.; Rasool, S.; Song, C. E.; Kim, D.; Lee, S. K.; Shin, W. S.; Lim, E. Non-halogenated solvent-processed ternary-blend solar cells via alkyl-side-chain engineering of a non-fullerene acceptor and their application in large-area devices. J. Mater. Chem. A 2020, 8, 10318–10330.
Hong, L.; Yao, H. F.; Wu, Z. A.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R. N.; Liao, Q.; Gao, B. W.; Xian, K. H. et al. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 2019, 31, 1903441.
Ye, L.; Collins, B. A.; Jiao, X. C.; Zhao, J. B.; Yan, H.; Ade, H. Miscibility-function relations in organic solar cells: Significance of optimal miscibility in relation to percolation. Adv. Energy Mater. 2018, 8, 1703058.
Li, Z. Y.; Peng, F.; Ying, L.; Quan, H. L.; Li, J. W.; Wang, X. Z.; Wu, H. B.; Huang, F.; Cao, Y. Fine tuning miscibility of donor/acceptor through solid additives enables all-polymer solar cells with 15.6% efficiency. Sol. RRL 2021, 5, 2100549.
Sun, C.; Lee, J. W.; Seo, S.; Lee, S.; Wang, C.; Li, H.; Tan, Z. P.; Kwon, S. K.; Kim, B. J.; Kim, Y. H. Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency. Adv. Energy Mater. 2022, 12, 2103239.
Morales, A. R.; Frazer, A.; Woodward, A. W.; Ahn-White, H. Y.; Fonari, A.; Tongwa, P.; Timofeeva, T.; Belfield, K. D. Design, synthesis, and structural and spectroscopic studies of push-pull two-photon absorbing chromophores with acceptor groups of varying strength. J. Org. Chem. 2013, 78, 1014–1025.
Park, J. S.; Choi, N.; Lee, C.; Lee, S.; Ha, J. W.; Hwang, D. H.; Kim, B. J. Elucidating roles of polymer donor aggregation in all-polymer and non-fullerene small-molecule-polymer solar cells. Chem. Mater. 2020, 32, 3585–3596.
Heintges, G. H. L.; Hendriks, K. H.; Colberts, F. J. M.; Li, M. M.; Li, J. Y.; Janssen, R. A. J. The influence of siloxane side-chains on the photovoltaic performance of a conjugated polymer. RSC Adv. 2019, 9, 8740–8747.
Wang, Q.; Li, M. M.; Peng, Z. X.; Kirby, N.; Deng, Y. F.; Ye, L.; Geng, Y. H. Calculation aided miscibility manipulation enables highly efficient polythiophene: Nonfullerene photovoltaic cells. Sci. China Chem. 2021, 64, 478–487.
You, H.; Kim, D.; Cho, H. H.; Lee, C.; Chong, S.; Ahn, N. Y.; Seo, M.; Kim, J.; Kim, F. S.; Kim, B. J. Shift of the branching point of the side-chain in naphthalenediimide (NDI)-based polymer for enhanced electron mobility and all-polymer solar cell performance. Adv. Funct. Mater. 2018, 28, 1803613.
Meng, B.; Song, H. Y.; Chen, X. X.; Xie, Z. Y.; Liu, J.; Wang, L. X. Replacing alkyl with oligo(ethylene glycol) as side chains of conjugated polymers for close π-π stacking. Macromolecules 2015, 48, 4357–4363.
Chen, Z.; Yan, L.; Rech, J. J.; Hu, J.; Zhang, Q. Q.; You, W. Green-solvent-processed conjugated polymers for organic solar cells: The impact of oligoethylene glycol side chains. ACS Appl. Polym. Mater. 2019, 1, 804–814.
Nielsen, C. B.; Giovannitti, A.; Sbircea, D. T.; Bandiello, E.; Niazi, M. R.; Hanifi, D. A.; Sessolo, M.; Amassian, A.; Malliaras, G. G.; Rivnay, J. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 2016, 138, 10252–10259.
Jeong, D.; Jo, I. Y.; Lee, S.; Kim, J. H.; Kim, Y.; Kim, D.; Reynolds, J. R.; Yoon, M. H.; Kim, B. J. High-performance n-type organic electrochemical transistors enabled by aqueous solution processing of amphiphilicity-driven polymer assembly. Adv. Funct. Mater. 2022, 32, 2111950.
Chen, X. X.; Zhang, Z. J.; Liu, J.; Wang, L. X. A polymer electron donor based on isoindigo units bearing branched oligo(ethylene glycol) side chains for polymer solar cells. Polym. Chem. 2017, 8, 5496–5503.
Zhang, S. Q.; Qin, Y. P.; Zhu, J.; Hou, J. H. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 2018, 30, 1800868.
Lee, W.; Lee, C.; Yu, H.; Kim, D. J.; Wang, C.; Woo, H. Y.; Oh, J. H.; Kim, B. J. Side chain optimization of naphthalenediimide-bithiophene-based polymers to enhance the electron mobility and the performance in all-polymer solar cells. Adv. Funct. Mater. 2016, 26, 1543–1553.
Lee, C.; Kang, H.; Lee, W.; Kim, T.; Kim, K. H.; Woo, H. Y.; Wang, C.; Kim, B. J. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: The importance of the polymer packing structure and the nanoscale blend morphology. Adv. Mater. 2015, 27, 2466–2471.
Lee, S.; Kim, Y.; Wu, Z.; Lee, C.; Oh, S. J.; Luan, N. T.; Lee, J.; Jeong, D.; Zhang, K.; Huang, F. et al. Aqueous-soluble naphthalene diimide-based polymer acceptors for efficient and air-stable all-polymer solar cells. ACS Appl. Mater. Interfaces 2019, 11, 45038–45047.
Zhu, D. Q.; Bao, X. C.; Zhu, Q. Q.; Gu, C. T.; Qiu, M.; Wen, S. G.; Wang, J. Y.; Shahid, B.; Yang, R. Q. Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a π bridge. Energy Environ. Sci. 2017, 10, 614–620.
Rivnay, J.; Mannsfeld, S. C. B.; Miller, C. E.; Salleo, A.; Toney, M. F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 2012, 112, 5488–5519.
Seo, S.; Kim, J.; Kang, H.; Lee, J. W.; Lee, S.; Kim, G. U.; Kim, B. J. Polymer donors with temperature-insensitive, strong aggregation properties enabling additive-free, processing temperature-tolerant high-performance all-polymer solar cells. Macromolecules 2021, 54, 53–63.
Seo, S.; Sun, C.; Lee, J. W.; Lee, S.; Lee, D.; Wang, C.; Phan, T. N. L.; Kim, G. U.; Cho, S.; Kim, Y. H. et al. Importance of high-electron mobility in polymer acceptors for efficient all-polymer solar cells: Combined engineering of backbone building unit and regioregularity. Adv. Funct. Mater. 2022, 32, 2108508.
Kim, K. H.; Kang, H.; Kim, H. J.; Kim, P. S.; Yoon, S. C.; Kim, B. J. Effects of solubilizing group modification in fullerene bis-adducts on normal and inverted type polymer solar cells. Chem. Mater. 2012, 24, 2373–2381.
Kim, G. U.; Sun, C.; Park, J. S.; Lee, H. G.; Lee, D.; Lee, J. W.; Kim, H. J.; Cho, S.; Kim, Y. H.; Kwon, S. K. et al. Importance of terminal group pairing of polymer donor and small-molecule acceptor in optimizing blend morphology and voltage loss of high-performance solar cells. Adv. Funct. Mater. 2021, 31, 2100870.
Lee, J. W.; Lim, C.; Lee, S. W.; Jeon, Y.; Lee, S.; Kim, T. S.; Lee, J. Y.; Kim, B. J. Intrinsically stretchable and non-halogenated solvent processed polymer solar cells enabled by hydrophilic spacer-incorporated polymers. Adv. Energy Mater. 2022, 12, 2202224.
Lee, J. W.; Sun, C.; Kim, D. J.; Ha, M. Y.; Han, D.; Park, J. S.; Wang, C.; Lee, W. B.; Kwon, S. K.; Kim, T. S. et al. Donor-acceptor alternating copolymer compatibilizers for thermally stable, mechanically robust, and high-performance organic solar cells. ACS Nano 2021, 15, 19970–19980.
Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551–1566.
Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.
Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M. M.; Yang, W. Y.; Li, H. N.; Min, J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 2020, 4, 1070–1086.
Li, Z. Y.; Ying, L.; Zhu, P.; Zhong, W. K.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157–163.
Seo, S.; Lee, J. W.; Kim, D. J.; Lee, D.; Phan, T. N. L.; Park, J.; Tan, Z. P.; Cho, S.; Kim, T. S.; Kim, B. J. Poly(dimethylsiloxane)-block-PM6 polymer donors for high-performance and mechanically robust polymer solar cells. Adv. Mater. 2023, 35, 2300230.
van Franeker, J. J.; Turbiez, M.; Li, W. W.; Wienk, M. M.; Janssen, R. A. J. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 2015, 6, 6229.
Park, J. S.; Sun, C.; Han, Y.; Kim, G. U.; Phan, T. N. L.; Kim, Y. H.; Kim, B. J. 2D outer side chain-incorporated Y acceptors for highly efficient organic solar cells with nonhalogenated solvent and annealing-free process. Adv. Energy Sustainability Res. 2022, 3, 2200070.
Wang, Y. W.; Lee, J.; Hou, X. Y.; Labanti, C.; Yan, J.; Mazzolini, E.; Parhar, A.; Nelson, J.; Kim, J. S.; Li, Z. Recent progress and challenges toward highly stable nonfullerene acceptor-based organic solar cells. Adv. Energy Mater. 2021, 11, 2003002.
Hung, K. E.; Lin, Y. S.; Xue, Y. J.; Yang, H. R.; Lai, Y. Y.; Chang, J. W.; Su, C. J.; Su, A. C.; Hsu, C. S.; Jeng, U. S. et al. Non-volatile perfluorophenyl-based additive for enhanced efficiency and thermal stability of nonfullerene organic solar cells via supramolecular fluorinated interactions. Adv. Energy Mater. 2022, 12, 2103702.
Cha, H.; Wu, J. Y.; Wadsworth, A.; Nagitta, J.; Limbu, S.; Pont, S.; Li, Z.; Searle, J.; Wyatt, M. F.; Baran, D. et al. An efficient, “burn in” free organic solar cell employing a nonfullerene electron acceptor. Adv. Mater. 2017, 29, 1701156.
Kim, G. U.; Park, J. H.; Lee, S.; Lee, D.; Lee, J. W.; Jeong, D.; Phan, T. N. L.; Kim, F. S.; Cho, S.; Kwon, S. K. et al. Revisiting carbazole-based polymer donors for efficient and thermally stable polymer solar cells: Structural utility of coplanar π-bridged spacers. J. Mater. Chem. A 2022, 10, 9408–9418.
Lee, J. W.; Seo, S.; Lee, S. W.; Kim, G. U.; Han, S.; Phan, T. N. L.; Lee, S.; Li, S.; Kim, T. S.; Lee, J. Y. et al. Intrinsically stretchable, highly efficient organic solar cells enabled by polymer donors featuring hydrogen-bonding spacers. Adv. Mater. 2022, 34, 2207544.
Ghasemi, M.; Balar, N.; Peng, Z. X.; Hu, H. W.; Qin, Y. P.; Kim, T.; Rech, J. J.; Bidwell, M.; Mask, W.; McCulloch, I. et al. A molecular interaction-diffusion framework for predicting organic solar cell stability. Nat. Mater. 2021, 20, 525–532.
Du, X. Y.; Heumueller, T.; Gruber, W.; Almora, O.; Classen, A.; Qu, J. F.; He, F.; Unruh, T.; Li, N.; Brabec, C. J. Unraveling the microstructure-related device stability for polymer solar cells based on nonfullerene small-molecular acceptors. Adv. Mater. 2020, 32, 1908305.
Lee, J.; Kim, J. W.; Park, S. A.; Son, S. Y.; Choi, K.; Lee, W.; Kim, M.; Kim, J. Y.; Park, T. Study of burn-in loss in green solvent-processed ternary blended organic photovoltaics derived from UV-crosslinkable semiconducting polymers and nonfullerene acceptors. Adv. Energy Mater. 2019, 9, 1901829.