PDF (12.3 MB)
Collect
Submit Manuscript
Highlight | Open Access

Energy-saving windows derived from transparent aerogels

Ruxue Du1Siqi Wang1Tingxian Li1,2()
Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Research Center of Solar Power & Refrigeration of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Abstract

Energy-saving windows play a crucial role in sustainable development of green buildings. Integrating super-insulating aerogels with glasses is an attractive method to minimize the energy loss through building windows. However, achieving energy-saving windows with high transparency, super insulation, mechanical robustness, low cost, and scalable aerogels remains a challenge. In a recent study published in Nature Energy, Smalyukh and coworkers synthesized a highly transparent silanized cellulose aerogel for energy-saving windows, overcoming the challenges. This work promotes the practical application of aerogel-based glazing and provides an effective way to save energy of buildings.

References

[1]

Ke, Y. J.; Li, Y. B.; Wu, L. C.; Wang, S. C.; Yang, R. G.; Yin, J.; Tan, G.; Long, Y. On-demand solar and thermal radiation management based on switchable interwoven surfaces. ACS Energy Lett. 2022, 7, 1758–1763.

[2]

Aguilar-Santana, J. L.; Jarimi, H.; Velasco-Carrasco, M.; Riffat, S. Review on window-glazing technologies and future prospects. Int. J. Low-Carbon Technol. 2020, 15, 112–120.

[3]

Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283.

[4]

Zhao, S. Y.; Zhang, Z.; Sèbe, G.; Wu, R.; Rivera Virtudazo, R. V.; Tingaut, P.; Koebel, M. M. Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 2015, 25, 2326–2334.

[5]

Zhao, S. Y.; Siqueira, G.; Drdova, S.; Norris, D.; Ubert, C.; Bonnin, A.; Galmarini, S.; Ganobjak, M.; Pan, Z. Y.; Brunner, S. et al. Additive manufacturing of silica aerogels. Nature 2020, 584, 387–392.

[6]

Abraham, E.; Cherpak, V.; Senyuk, B.; ten Hove, J. B.; Lee, T.; Liu, Q. K.; Smalyukh, I. I. Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy 2023, 8, 381–396.

[7]

Apostolopoulou-Kalkavoura, V.; Munier, P.; Bergström, L. Thermally insulating nanocellulose-based materials. Adv. Mater. 2021, 33, 2001839.

[8]

Liu, Q. K.; Frazier, A. W.; Zhao, X. P.; De La Cruz, J. A.; Hess, A. J.; Yang, R. G.; Smalyukh, I. I. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy 2018, 48, 266–274.

[9]

Chan, K. Y.; Shen, X.; Yang, J.; Lin, K. T.; Venkatesan, H.; Kim, E.; Zhang, H.; Lee, J. H.; Yu, J. H.; Yang, J. L. et al. Scalable anisotropic cooling aerogels by additive freeze-casting. Nat. Commun. 2022, 13, 5553.

[10]

Wang, S. C.; Jiang, T. Y.; Meng, Y.; Yang, R. G.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504.

[11]

Sui, C. X.; Pu, J. K.; Chen, T. H.; Liang, J. W.; Lai, Y. T.; Rao, Y. F.; Wu, R. H.; Han, Y.; Wang, K. Y.; Li, X. Q. et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 2023, 6, 428–437.

Nano Research Energy
Article number: e9120090
Cite this article:
Du R, Wang S, Li T. Energy-saving windows derived from transparent aerogels. Nano Research Energy, 2024, 3: e9120090. https://doi.org/10.26599/NRE.2023.9120090
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return