AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

From lab to market: a review of commercialization and advances for binders in lithium-, zinc-, sodium-ion batteries

Chang Su1,§Xuan Gao2,3,§Kejiang Liu4Yuhang Dai2,3Haobo Dong2,3Yiyang Liu2,3Jiayan Zhu5Qiuxia Zhang5Hongzhen He2,3Guanjie He2,3( )
Department of Management, Technology, and Economics, ETH Zürich, Zürich 8092, Switzerland
Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H0AJ, UK
Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E7JE, UK
Department of Physics, Hong Kong Baptist University, Hong Kong 999077, China
State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

§ Chang Su and Xuan Gao contributed equally to this work.

Show Author Information

Graphical Abstract

In the process of commercialization, the development of the energy storage market continues to demand scientific research, and the emergence of the new binder further expands the development of energy storage market. The demand matrix is formed by the continuous improvement of mechanical properties, temperature span, electronic & ionic conductivity, and volume changes of next generation binders.

Abstract

The paper discusses the progress and commercialization of binders for energy storage applications, such as batteries. It explains the role of binders in holding together active materials and current collectors, and highlights the challenges associated with conventional organic solvents in binders. The potential of aqueous binders is introduced as a cost-effective and environmentally friendly alternative. The advantages and limitations of different types of binders are discussed, and the importance of binder selection for optimal battery performance is emphasized. The current state of commercialization of binders is reviewed, and the need for collaboration between researchers, manufacturers, and policymakers to develop and promote environmentally friendly and cost-effective binders is emphasized. The paper concludes by outlining future directions for research and development to further improve the performance and commercialization of binders, while addressing limitations such as lack of standardization, high cost, and long-term stability and reliability.

References

[1]

Zhang, W.; Dai, Y. H.; Chen, R. W.; Xu, Z. M.; Li, J. W.; Zong, W.; Li, H. X.; Li, Z.; Zhang, Z. Y.; Zhu, J. X. et al. Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem., Int. Ed. 2023, 62, e202212695.

[2]

Zong, W.; Lai, F. L.; He, G. J.; Feng, J. R.; Wang, W.; Lian, R. Q.; Miao, Y. E.; Wang, G. C.; Parkin, I. P.; Liu, T. X. Sulfur-deficient bismuth sulfide/nitrogen-doped carbon nanofibers as advanced free-standing electrode for asymmetric supercapacitors. Small 2018, 14, 1801562.

[3]

Gao, X.; Wu, H. Y.; Su, C.; Lu, C. M.; Dai, Y. H.; Zhao, S. Y.; Hu, X. Y.; Zhao, F. J.; Zhang, W.; Parkin, I. P. et al. Recent advances in carbon-based nanomaterials for multivalent-ion hybrid capacitors: A review. Energy Environ. Sci. 2023, 16, 1364–1383.

[4]

Zhang, L. Q.; Huang, J. J.; Guo, H. L.; Ge, L. F.; Tian, Z. H.; Zhang, M. J.; Wang, J. T.; He, G. J.; Liu, T. X.; Hofkens, J. et al. Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv. Energy Mater. 2023, 13, 2203790.

[5]

Chen, R. W.; Tang, H.; He, P.; Zhang, W.; Dai, Y. H.; Zong, W.; Guo, F.; He, G. J.; Wang, X. H. Interface engineering of biomass-derived carbon used as ultrahigh-energy-density and practical mass-loading supercapacitor electrodes. Adv. Funct. Mater. 2023, 33, 2212078.

[6]

Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.

[7]

Ni, Q.; Kim, B.; Wu, C.; Kang, K. Non-electrode components for rechargeable aqueous zinc batteries: Electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 2022, 34, 2108206.

[8]

Dai, Y. H.; Zhang, C. Y.; Zhang, W.; Cui, L. M.; Ye, C. M.; Hong, X. F.; Li, J. H.; Chen, R. W.; Zong, W.; Gao, X. et al. Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators. Angew. Chem., Int. Ed. 2023, 62, e202301192.

[9]

Cai, Y. J.; Li, Y. Y.; Jin, B. Y.; Ali, A.; Ling, M.; Cheng, D. G.; Lu, J. G.; Hou, Y.; He, Q. G.; Zhan, X. L. et al. Dual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 46800–46807.

[10]

Li, J. W.; Luo, N. J.; Kang, L. Q.; Zhao, F. J.; Jiao, Y. D.; Macdonald, T. J.; Wang, M.; Parkin, I. P.; Shearing, P. R.; Brett, D. J. L. et al. Hydrogen-bond reinforced superstructural manganese oxide as the cathode for ultra-stable aqueous zinc ion batteries. Adv. Energy Mater. 2022, 12, 2201840.

[11]

Gao, X.; Dai, Y. H.; Zhang, C. Y.; Zhang, Y. X.; Zong, W.; Zhang, W.; Chen, R. W.; Zhu, J. X.; Hu, X. Y.; Wang, M. Y. et al. When it’s heavier: Interfacial and solvation chemistry of isotopes in aqueous electrolytes for Zn-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202300608.

[12]

Gao, X.; Sun, X. C.; Liu, J. S.; Gao, N.; Li, H. D. A carbon-based anode combining with SiO x and nanodiamond for high performance lithium ion battery. J. Energy Storage 2019, 25, 100901.

[13]

Zhang, Y. F.; Dong, H. B.; Wang, T. L.; He, G. J.; Parkin, I. P.; Cegla, F. Ultrasonic guided wave monitoring of dendrite formation at electrode-electrolyte interface in aqueous zinc ion batteries. J. Power Sources 2022, 542, 231730.

[14]
Gao, X.; Liu, K. J.; Su, C.; Zhang, W.; Dai, Y. H.; Parkin, I. P.; Carmalt, C. J.; He, G. J. From bibliometric analysis: 3D printing design strategies and battery applications with a focus on zinc-ion batteries. SmartMat, in press, DOI: 10.1002/smm2.1197.
[15]

Cao, Z.; Zheng, X. Y.; Huang, W. B.; Wang, Y.; Qu, Q. T.; Zheng, H. H. Dynamic bonded supramolecular binder enables high-performance silicon anodes in lithium-ion batteries. J. Power Sources 2020, 463, 228208.

[16]

Chang, B.; Kim, J.; Cho, Y.; Hwang, I.; Jung, M. S.; Char, K.; Lee, K. T.; Kim, K. J.; Choi, J. W. Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2001069.

[17]

Toigo, C.; Singh, M.; Gmeiner, B.; Biso, M.; Pettinger, K. H. A method to measure the swelling of water-soluble PVDF binder system and its electrochemical performance for lithium ion batteries. J. Electrochem. Soc. 2020, 167, 020514.

[18]

Chen, C.; Chen, F.; Liu, L. M.; Zhao, J. W.; Wang, F. Cross-linked hyperbranched polyethylenimine as an efficient multidimensional binder for silicon anodes in lithium-ion batteries. Electrochim. Acta 2019, 326, 134964.

[19]

Wang, Y. B.; Yang, Q.; Guo, X.; Yang, S.; Chen, A.; Liang, G. J.; Zhi, C. Y. Strategies of binder design for high-performance lithium-ion batteries: A mini review. Rare Metals 2022, 41, 745–761.

[20]

Gao, X.; Sun, X. C.; Jiang, Z. G.; Wang, Q. L.; Gao, N.; Li, H. D.; Zhang, H. X.; Yu, K. F.; Su, C. Introducing nanodiamond into TiO2-based anode for improving the performance of lithium-ion batteries. New J. Chem. 2019, 43, 3907–3912.

[21]

Chen, S. M.; Song, Z. B.; Ji, Y. C.; Yang, K.; Fang, J. J.; Wang, L.; Wang, Z. J.; Zhao, Y.; Zhao, Y. L.; Yang, L. Y. et al. Suppressing polysulfide shuttling in lithium-sulfur batteries via a multifunctional conductive binder. Small Method. 2021, 5, 2100839.

[22]

Chen, Z. Z.; Lu, M. J.; Qian, Y.; Yang, Y.; Liu, J.; Lin, Z.; Yang, D. J.; Lu, J.; Qiu, X. Q. Ultra-low dosage lignin binder for practical lithium-sulfur batteries. Adv. Energy Mater. 2023, 13, 2300092.

[23]

Wang, Y.; Xu, H.; Chen, X.; Jin, H.; Wang, J. P. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries. Energy Storage Mater. 2021, 38, 121–129.

[24]

Cui, Y.; Chen, J. H.; Zhao, J. Y.; Ma, Z.; Tan, Y. M.; Xue, J. J.; Xu, H. L.; Nan, J. M. Aqueous lithium carboxymethyl cellulose and polyacrylic acid/acrylate copolymer composite binder for the LiNi0.5Mn0.3Co0.2O2 cathode of lithium-ion batteries. J. Electrochem. Soc. 2022, 169, 010513.

[25]

Das, P.; Zayat, B.; Wei, Q. L.; Salamat, C. Z.; Magdău, I. B.; Elizalde-Segovia, R.; Rawlings, D.; Lee, D.; Pace, G.; Irshad, A. et al. Dihexyl-substituted poly(3, 4-propylenedioxythiophene) as a dual ionic and electronic conductive cathode binder for lithium-ion batteries. Chem. Mater. 2020, 32, 9176–9189.

[26]

Eng, A. Y. S.; Nguyen, D. T.; Kumar, V.; Subramanian, G. S.; Ng, M. F.; Seh, Z. W. Tailoring binder-cathode interactions for long-life room-temperature sodium-sulfur batteries. J. Mater. Chem. A 2020, 8, 22983–22997.

[27]

Fu, X. W.; Scudiero, L.; Zhong, W. H. A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 1835–1848.

[28]

Gao, S. L.; Sun, F. Y.; Brady, A.; Pan, Y. Y.; Erwin, A.; Yang, D. D.; Tsukruk, V.; Stack, A. G.; Saito, T.; Yang, H. B. et al. Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries. Nano Energy 2020, 73, 104804.

[29]

Guo, C.; Liu, M.; Gao, G. K.; Tian, X.; Zhou, J.; Dong, L. Z.; Li, Q.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Anthraquinone covalent organic framework hollow tubes as binder microadditives in Li-S batteries. Angew. Chem. 2022, 61, e202113315.

[30]

Guo, R. N.; Wang, J. L.; Zhang, S. L.; Han, W. Q. Multifunctional cross-linked polymer-Laponite nanocomposite binder for lithium-sulfur batteries. Chem. Eng. J. 2020, 388, 124316.

[31]

Yang, C. C.; Jiang, Y.; Chen, F.; Zhao, J. W. Highly elastic hyperbranched polymer binder for silicon anodes in lithium-ion batteries. Electrochim. Acta 2023, 442, 141805.

[32]

Wang, Y. Y.; Wang, Y.; Li, X.; Lv, L. Z.; Huang, W. B.; Shi, Q.; Zheng, H. H. Nickel ion-anchored helical braided binder network with soft-rigid synergy and self-recovery ability for high-performance silicon anode. J. Power Sources 2023, 560, 232671.

[33]

Lu, C. Y.; Qiu, J. H.; Zhao, W.; Sakai, E.; Zhang, G. H. A tough hydrogel with fast self-healing and adhesive performance for wearable sensors. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 632, 127793.

[34]

Guo, R. N.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Han, W. Q. New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 14051–14058.

[35]

Worku, B. E.; Zheng, S. M.; Wang, B. Review of low-temperature lithium-ion battery progress: New battery system design imperative. Int. J. Energy Res. 2022, 46, 14609–14626.

[36]

Song, Z. B.; Zhang, T. H.; Wang, L.; Zhao, Y.; Li, Z. K.; Zhang, M.; Wang, K.; Xue, S. D.; Fang, J. J.; Ji, Y. C. et al. Bio-inspired binder design for a robust conductive network in silicon-based anodes. Small Methods 2022, 6, 2101591.

[37]

Gupta, A.; Badam, R.; Matsumi, N. Heavy-duty performance from silicon anodes using poly(BIAN)/Poly(acrylic acid)-based self-healing composite binder in lithium-ion secondary batteries. ACS Appl. Energy Mater. 2022, 5, 7977–7987.

[38]

Hong, S. B.; Lee, Y. J.; Kim, U. H.; Bak, C.; Lee, Y. M.; Cho, W.; Hah, H. J.; Sun, Y. K.; Kim, D. W. All-solid-state lithium batteries: Li+-conducting ionomer binder for dry-processed composite cathodes. ACS Energy Lett. 2022, 7, 1092–1100.

[39]

Chu, Y.; Cui, X. M.; Kong, W. L.; Du, K. Y.; Zhen, L.; Wang, L. Q. A robust polymeric binder based on complementary multiple hydrogen bonds in lithium-sulfur batteries. Chem. Eng. J. 2022, 427, 130844.

[40]

Hu, L. L.; Zhang, X. D.; Li, B.; Jin, M. H.; Shen, X. H.; Luo, Z. W.; Tian, Z. Y.; Yuan, L. Z.; Deng, J. K.; Dai, Z. F. et al. Design of high-energy-dissipation, deformable binder for high-areal-capacity silicon anode in lithium-ion batteries. Chem. Eng. J. 2021, 420, 129991.

[41]

Yu, H. L.; Bi, M. Z.; Zhang, C. J.; Zhang, T. J.; Zhang, X. N.; Liu, H. T.; Mi, J. L.; Shen, X. Q.; Yao, S. S. Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries. Electrochim. Acta 2022, 428, 140908.

[42]

Jiang, M. F.; Mu, P. Z.; Zhang, H. R.; Dong, T. T.; Tang, B.; Qiu, H. Y.; Chen, Z.; Cui, G. L. An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 2022, 14, 87.

[43]

Hu, S. M.; Wang, L. D. Y.; Huang, T.; Yu, A. S. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. J. Power Sources 2020, 449, 227472.

[44]

Hu, X. C.; Liang, K.; Li, J. B.; Ren, Y. R. A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries. Mater. Today Commun. 2021, 28, 102530.

[45]

Huang, Y. Y.; Shaibani, M.; Gamot, T. D.; Wang, M. C.; Jovanović, P.; Cooray, M. C. D.; Mirshekarloo, M. S.; Mulder, R. J.; Medhekar, N. V.; Hill, M. R. et al. A saccharide-based binder for efficient polysulfide regulations in Li-S batteries. Nat. Commun. 2021, 12, 5375.

[46]

Srivastava, I.; Bolintineanu, D. S.; Lechman, J. B.; Roberts, S. A. Controlling binder adhesion to impact electrode mesostructures and transport. ACS Appl. Mater. Interfaces 2020, 12, 34919–34930.

[47]

Chouchane, M.; Rucci, A.; Lombardo, T.; Ngandjong, A. C.; Franco, A. A. Lithium ion battery electrodes predicted from manufacturing simulations: Assessing the impact of the carbon-binder spatial location on the electrochemical performance. J. Power Sources 2019, 444, 227285.

[48]

Kwon, T. W.; Jeong, Y. K.; Lee, I.; Kim, T. S.; Choi, J. W.; Coskun, A. Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 2014, 26, 7979–7985.

[49]

Javed, M. S.; Lei, H.; Wang, Z. L.; Liu, B. T.; Cai, X.; Mai, W. J. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573.

[50]

Jiang, M.; Fu, C. P.; Cheng, R. Q.; Zhang, W.; Liu, T. Y.; Wang, R. B.; Zhang, J.; Sun, B. D. Integrated and binder-free air cathodes of Co3Fe7 nanoalloy and Co5.47N encapsulated in nitrogen-doped carbon foam with superior oxygen reduction activity in flexible aluminum-air batteries. Adv. Sci. 2020, 7, 2000747.

[51]

Gao, X.; Zhang, C. Y.; Dai, Y. H.; Zhao, S. Y.; Hu, X. Y.; Zhao, F. J.; Zhang, W.; Chen, R. W.; Zong, W.; Du, Z. J. et al. Three-dimensional manganese Oxide@Carbon networks as free-standing, high-loading cathodes for high-performance zinc-ion batteries. Small Struct. 2023, 4, 2200316.

[52]

Wood III, D. L.; Li, J. L.; Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 2015, 275, 234–242.

[53]

Jiang, Z. S.; Li, J. Z.; Yang, Y.; Mu, L. Q.; Wei, C. X.; Yu, X. Q.; Pianetta, P.; Zhao, K. J.; Cloetens, P.; Lin, F. et al. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes. Nat. Commun. 2020, 11, 2310.

[54]

Zhao, Y.; Yang, L. Y.; Zuo, Y. X.; Song, Z. B.; Liu, F.; Li, K.; Pan, F. Conductive binder for si anode with boosted charge transfer capability via n-type doping. ACS Appl. Mater. Interfaces 2018, 10, 27795–27800.

[55]

Jiao, X. X.; Yin, J. Q.; Xu, X. Y.; Wang, J. L.; Liu, Y. Y.; Xiong, S. Z.; Zhang, Q. L.; Song, J. X. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2005699.

[56]

Kim, S.; Kim, D. H.; Cho, M.; Lee, W. B.; Lee, Y. Fast-charging lithium-sulfur batteries enabled via lean binder content. Small 2020, 16, 2004372.

[57]

Lee, Y. K. The effect of active material, conductive additives, and binder in a cathode composite electrode on battery performance. Energies 2019, 12, 658.

[58]

Li, Z. H.; Wan, Z. W.; Zeng, X. Q.; Zhang, S. M.; Yan, L. J.; Ji, J. P.; Wang, H. X.; Ma, Q. X.; Liu, T. F.; Lin, Z. et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries. Nano Energy 2021, 79, 105430.

[59]

Li, Z. H.; Zhang, Y. P.; Liu, T. F.; Gao, X. H.; Li, S. Y.; Ling, M.; Liang, C. D.; Zheng, J. C.; Lin, Z. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 2020, 10, 1903110.

[60]

Liao, J. B.; Liu, Z.; Wang, J. L.; Ye, Z. B. Cost-effective water-soluble poly(vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium-sulfur batteries. ACS Omega 2020, 5, 8272–8282.

[61]

Liu, Y.; Wang, H. C.; Yang, K. K.; Yang, Y. N.; Ma, J. Q.; Pan, K. M.; Wang, G. X.; Ren, F. Z.; Pang, H. Enhanced electrochemical performance of Sb2O3 as an anode for lithium-ion batteries by a stable cross-linked binder. Appl. Sci. 2019, 9, 2677.

[62]

Nam, J.; Kim, E.; Rajeev, K. K.; Kim, Y.; Kim, T. H. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Sci. Rep. 2020, 10, 14966.

[63]

Ning, J. Y.; Yu, H. T.; Mei, S. L.; Schütze, Y.; Risse, S.; Kardjilov, N.; Hilger, A.; Manke, I.; Bande, A.; Ruiz, V. G. et al. Constructing binder-and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries. ChemSusChem 2022, 15, e202200434.

[64]

Pace, G. T.; Le, M. L.; Clément, R. J.; Segalman, R. A. A coacervate-based mixed-conducting binder for high-power, high-energy batteries. ACS Energy Lett. 2023, 8, 2781–2788.

[65]

Qi, Q.; Lv, X. H.; Lv, W.; Yang, Q. H. Multifunctional binder designs for lithium-sulfur batteries. J. Energy Chem. 2019, 39, 88–100.

[66]

Tong, Y. H.; Jin, S. Y.; Xu, H. Y.; Li, J. W.; Kong, Z.; Jin, H.; Xu, H. An energy dissipative binder for self-tuning silicon anodes in lithium-ion batteries. Adv. Sci. 2023, 10, 2205443.

[67]

Rajeev, K. K.; Kim, E.; Nam, J.; Lee, S.; Mun, J.; Kim, T. H. Chitosan- grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries. Electrochim. Acta 2020, 333, 135532.

[68]

Sawada, S.; Yoshida, H.; Luski, S.; Markevich, E.; Salitra, G.; Elias, Y.; Aurbach, D. Stable high-capacity elemental sulfur cathodes with simple process for lithium sulfur batteries. Molecules 2023, 28, 4568.

[69]

Sun, S.; He, D. L.; Li, P.; Liu, Y.; Wan, Q.; Tan, Q. W.; Liu, Z. W.; An, F. Q.; Gong, G. X.; Qu, X. H. Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries. J. Power Sources 2020, 454, 227907.

[70]

Tong, J.; Han, C. P.; Hao, X. R.; Qin, X. L.; Li, B. H. Conductive polyacrylic acid-polyaniline as a multifunctional binder for stable organic quinone electrodes of lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 39630–39638.

[71]

Mazouzi, D.; Karkar, Z.; Hernandez, C. R.; Manero, P. J.; Guyomard, D.; Roué, L.; Lestriez, B. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J. Power Sources 2015, 280, 533–549.

[72]

Liu, J.; Sun, M. H.; Zhang, Q.; Dong, F. F.; Kaghazchi, P.; Fang, Y. X.; Zhang, S. Q.; Lin, Z. A robust network binder with dual functions of Cu2+ ions as ionic crosslinking and chemical binding agents for highly stable Li-S batteries. J. Mater. Chem. A 2018, 6, 7382–7388.

[73]

Yuan, H.; Huang, J. Q.; Peng, H. J.; Titirici, M. M.; Xiang, R.; Chen, R. J.; Liu, Q. B.; Zhang, Q. A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 2018, 8, 1802107.

[74]

Wang, A. R.; Zhou, W. J.; Huang, A. X.; Chen, M. F.; Chen, J. Z.; Tian, Q. H.; Xu, J. L. Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. J. Colloid Interface Sci. 2020, 577, 256–264.

[75]

Lee, S.; Park, J.; Yang, J.; Lu, W. Molecular dynamics simulations of the traction-separation response at the interface between PVDF binder and graphite in the electrode of Li-ion batteries. J. Electrochem. Soc. 2014, 161, A1218–A1223.

[76]

Chen, Z. H.; Christensen, L.; Dahn, J. R. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. J. Electrochem. Soc. 2003, 150, A1073–A1078.

[77]

Zhang, H. X.; Feng, C.; Zhai, Y. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries. Adv. Mater. 2009, 21, 2299–2304.

[78]

Luo, S.; Wang, K.; Wang, J. P.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294–2298.

[79]

Zhao, Y.; Yang, L. Y.; Liu, D.; Hu, J. T.; Han, L.; Wang, Z. J.; Pan, F. A conductive binder for high-performance Sn electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 1672–1677.

[80]

Liu, C. L.; Li, Q. L.; Cao, J. W.; Zhang, Q. C.; Man, P.; Zhou, Z. Y.; Li, C. W.; Yao, Y. G. Superstructured α-Fe2O3 nanorods as novel binder-free anodes for high-performing fiber-shaped Ni/Fe battery. Sci. Bull. 2020, 65, 812–819.

[81]

Hagen, M.; Dörfler, S.; Althues, H.; Tübke, J.; Hoffmann, M. J.; Kaskel, S.; Pinkwart, K. Lithium-sulphur batteries-binder free carbon nanotubes electrode examined with various electrolytes. J. Power Sources 2012, 213, 239–248.

[82]

Hieu, L. T.; So, S.; Kim, I. T.; Hur, J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chem. Eng. J. 2021, 411, 128584.

[83]

Liu, Z. Z.; Li, G. J.; Qin, Q.; Mi, L. W.; Li, G. R.; Zheng, G. Q.; Liu, C. T.; Li, Q.; Liu, X. H. Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Adv. Compos. Hybrid Mater. 2021, 4, 1215–1225.

[84]

Chang, W. J.; Lee, G. H.; Cheon, Y. J.; Kim, J. T.; Lee, S. I.; Kim, J.; Kim, M.; Park, W. I.; Lee, Y. J. Direct observation of carboxymethyl cellulose and styrene-butadiene rubber binder distribution in practical graphite anodes for Li-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 41330–41337.

[85]

Li, J.; Lewis, R. B.; Dahn, J. R. Sodium carboxymethyl cellulose: A potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid-State Lett. 2007, 10, A17–A20.

[86]

Gurunathan, P.; Ette, P. M.; Ramesha, K. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders. ACS Appl. Mater. Interfaces 2014, 6, 16556–16564.

[87]

Fan, M. P.; Yu, H. Y.; Chen, Y. High-capacity sodium ion battery anodes based on CuO nanosheets and carboxymethyl cellulose binder. Mater. Technol. 2017, 32, 598–605.

[88]

Gong, S.; Lee, J.; Kim, H. S. Development of electrode architecture using Sb-rGO composite and CMC binder for high-performance sodium-ion battery anodes. J. Korean Ceram. Soc. 2020, 57, 91–97.

[89]

Dueramae, I.; Okhawilai, M.; Kasemsiri, P.; Uyama, H.; Kita, R. Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery. Sci. Res. 2020, 10, 12587.

[90]

Yui, Y.; Hayashi, M.; Hayashi, K.; Nakamura, J. Electrochemical properties of Sn-Co electrode with various kinds of binder materials for sodium ion batteries. Solid State Ion. 2016, 288, 219–223.

[91]

Zhang, S. S.; Tran, D. T.; Zhang, Z. C. Poly(acrylic acid) gel as a polysulphide blocking layer for high-performance lithium/sulphur battery. J. Mater. Chem. A 2014, 2, 18288–18292.

[92]

Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

[93]

Zamarayeva, A. M.; Jegraj, A.; Toor, A.; Pister, V. I.; Chang, C.; Chou, A.; Evans, J. W.; Arias, A. C. Electrode composite for flexible zinc-manganese dioxide batteries through in-situ polymerization of polymer hydrogel. Energy Technol. 2020, 8, 1901165.

[94]

Wu, K.; Huang, J. H.; Yi, J.; Liu, X. Y.; Liu, Y. Y.; Wang, Y. G.; Zhang, J. J.; Xia, Y. Y. Recent advances in polymer electrolytes for zinc ion batteries: Mechanisms, properties, and perspectives. Adv. Energy Mater. 2020, 10, 1903977.

[95]

Huang, J. Q.; Zhang, Q.; Zhang, S. M.; Liu, X. F.; Zhu, W. C.; Qian, W. Z.; Wei, F. Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 2013, 58, 99–106.

[96]

Wang, X.; Liu, S. J.; Zhang, Y. J.; Wang, H. Y.; Aboalhassan, A. A.; Li, G.; Xu, G.; Xue, C. L.; Yu, J. Y.; Yan, J. H. et al. Highly elastic block copolymer binders for silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 38132–38139.

[97]

Zhang, Y.; Huld, F.; Lu, S.; Jektvik, C.; Lou, F. L.; Yu, Z. X. Revisiting polytetrafluorethylene binder for solvent-free lithium-ion battery anode fabrication. Batteries 2022, 8, 57.

[98]

Liu, Y.; Huang, M.; Xiong, F. Y.; Zhu, J. X.; An, Q. Y. Improved zinc-ion storage performance of the metal-free organic anode by the effect of binder. Chem. Eng. J. 2022, 428, 131092.

[99]

Wu, M. J.; Zhang, G. X.; Chen, N.; Chen, W. F.; Qiao, J. L.; Sun, S. H. A self-supported electrode as a high-performance binder-and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Storage Mater. 2020, 24, 272–280.

[100]

Wu, S. X.; Yang, Y. J.; Liu, C. B.; Liu, T. F.; Zhang, Y. P.; Zhang, B. K.; Luo, D.; Pan, F.; Lin, Z. In-situ polymerized binder: a three-in-one design strategy for all-integrated SiO x anode with high mass loading in lithium ion batteries. ACS Energy Lett. 2021, 6, 290–297.

[101]

Zhang, P.; Zhu, Q. Z.; Guan, Z. R. X.; Zhao, Q.; Sun, N.; Xu, B. A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries. ChemSusChem 2020, 13, 1621–1628.

[102]

Wang, M.; Hu, J. Z.; Wang, Y. K.; Cheng, Y. T. The influence of polyvinylidene fluoride (PVDF) binder properties on LiNi0.33Co0.33Mn0.33O2 (NMC) electrodes made by a dry-powder-coating process. J. Electrochem. Soc. 2019, 166, A2151–A2157.

[103]

Zhou, W.; He, B. C.; Quan, L. J.; Li, R. H.; Chen, Y. Q.; Fan, C. L.; Chen, S.; Xu, C. H.; Fan, X. L.; Xing, L. D. et al. Binder chemistry dependent electrolyte reduction in potassium-ion batteries: A successive, two-step reduction way. Adv. Energy Mater. 2023, 13, 2202874.

[104]

Zhao, Y.; Liang, Z.; Kang, Y. Q.; Zhou, Y. N.; Li, Y. X.; He, X. M.; Wang, L.; Mai, W. C.; Wang, X. S.; Zhou, G. M. et al. Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Mater. 2021, 35, 353–377.

[105]

Dong, H. B.; Liu, R. R.; Hu, X. Y.; Zhao, F. J.; Kang, L. Q.; Liu, L. X.; Li, J. W.; Tan, Y. S.; Zhou, Y. Q.; Brett, D. J. L. et al. Cathode-electrolyte interface modification by binder engineering for high-performance aqueous zinc-ion batteries. Adv. Sci. 2023, 10, 2205084.

[106]

Kumagai, S.; Abe, Y.; Tomioka, M.; Kabir, M. Suitable binder for Li-ion battery anode produced from rice husk. Sci. Rep. 2021, 11, 15784.

[107]

Li, C. C.; Lee, J. T.; Peng, X. W. Improvements of dispersion homogeneity and cell performance of aqueous-processed LiCoO2 cathodes by using dispersant of PAA-NH4. J. Electrochem. Soc. 2006, 153, A809.

[108]

Tran, B.; Oladeji, I. O.; Wang, Z. D.; Calderon, J.; Chai, G. Y.; Atherton, D.; Zhai, L. Thick LiCoO2/nickel foam cathode prepared by an adhesive and water-soluble PEG-based copolymer binder. J. Electrochem. Soc. 2012, 159, A1928–A1933.

[109]

Leanza, D.; Vaz, C. A. F.; Novák, P.; El Kazzi, M. Instability of PVDF binder in the LiFePO4 versus Li4Ti5O12 Li-ion battery cell. Helv. Chim. Acta 2021, 104, e2000183.

[110]

Daigle, J. C.; Barray, F.; Gagnon, C.; Clément, D.; Hovington, P.; Demers, H.; Guerfi, A.; Zaghib, K. Amphiphilic latex as a water-based binder for LiFePO4 cathode. J. Power Sources 2019, 415, 172–178.

[111]

Chang, H. J.; Rodríguez-Pérez, I. A.; Fayette, M.; Canfield, N. L.; Pan, H. L.; Choi, D.; Li, X. L.; Reed, D. Effects of water-based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries. Carbon Energy 2021, 3, 473–481.

[112]

Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072.

[113]

Xu, Y. H.; Yin, G. P.; Ma, Y. L.; Zuo, P. J.; Cheng, X. Q. Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder. J. Power Sources 2010, 195, 2069–2073.

[114]

Yang, Y. J.; Wu, S. X.; Zhang, Y. P.; Liu, C. B.; Wei, X. J.; Luo, D.; Lin, Z. Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J. 2021, 406, 126807.

[115]

Jaikrajang, N.; Kao-Ian, W.; Muramatsu, T.; Chanajaree, R.; Yonezawa, T.; Al Balushi, Z. Y.; Kheawhom, S.; Cheacharoen, R. Impact of binder functional groups on controlling chemical reactions to improve stability of rechargeable zinc-ion batteries. ACS Appl. Energy Mater. 2021, 4, 7138–7147.

[116]

Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.

[117]

Zhang, S.; Ma, J.; Dong, S. M.; Cui, G. L. Designing all-solid-state batteries by theoretical computation: A review. Electrochem. Energy Rev. 2023, 6, 4.

Nano Research Energy
Article number: e9120094
Cite this article:
Su C, Gao X, Liu K, et al. From lab to market: a review of commercialization and advances for binders in lithium-, zinc-, sodium-ion batteries. Nano Research Energy, 2024, 3: e9120094. https://doi.org/10.26599/NRE.2023.9120094

2657

Views

732

Downloads

6

Crossref

6

Scopus

Altmetrics

Received: 12 June 2023
Revised: 09 August 2023
Accepted: 10 August 2023
Published: 26 September 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return