Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Heteroatom doping has emerged as a prevailing strategy to enhance the storage of sodium ions in carbon materials. However, the underlying mechanism governing the performance enhancement remains undisclosed. Herein, we fabricated N/S co-doped carbon beaded fibers (S-N-CBFs), which exhibited glorious rate performance and durableness in Na+ storage, showcasing no obvious capacity decay even after 3500 cycles. Furthermore, when used as anodes in sodium-ion capacitors, the S-N-CBFs delivered exceptional results, boasting a high energy density of 225 Wh·kg–1, superior power output of 22500 W·kg–1, and outstanding cycling stability with a capacity attenuation of merely 0.014% per cycle after 4000 cycles at 2 A·g–1. Mechanistic investigations revealed that the incorporation of both pyridinic N and pyrrolic N into the carbon matrix of S-N-CBFs induced internal electric fields (IEFs), with the former IEF being stronger than the latter, in conjunction with the doped S atom. Density functional theory calculations further unveiled that the intensity of the IEF directly influenced the adsorption of Na+, thereby resulting in the exceptional performances of S-N-CBFs as sodium-ion storage materials. This work uncovers the pivotal role of IEF in regulating the electronic structure of carbon materials and enhancing their Na+ storage capabilities, providing valuable insights for the development of more advanced electrode materials.
Yu, G. H.; Xie, X.; Pan, L. J.; Bao, Z. N.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234.
Aravindan, V.; Gnanaraj, J.; Lee, Y. S.; Madhavi, S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 2014, 114, 11619–11635.
Sun, G. Z.; Liu, J. Q.; Zhang, X.; Wang, X. W.; Li, H.; Yu, Y.; Huang, W.; Zhang, H.; Chen, P. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angew. Chem. 2014, 126, 12784–12788.
Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.
Chen, C.; Huang, Y.; Meng, Z. Y.; Xu, Z. P.; Liu, P. B.; Li, T. H. Multi-heteroatom doped porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage. J. Energy Chem. 2021, 54, 482–492.
Xiao, X. H.; Duan, X. G.; Song, Z. R.; Deng, X. L.; Deng, W. T.; Hou, H. S.; Zheng, R. J.; Zou, G. Q.; Ji, X. B. High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 2022, 32, 2110476.
He, L. L.; Sun, W.; Sun, K. N.; Mao, Y. Q.; Deng, T. T.; Fang, L.; Wang, Z. H.; Chen, S. L. Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as high-performance anode materials for superior sodium storage. J. Power Sources 2022, 526, 231019.
Liu, Y.; Sun, Z. H.; Tan, K.; Denis, D. K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Recent progress in flexible non-lithium based rechargeable batteries. J. Mater. Chem. A 2019, 7, 4353–4382.
Li, S.; Qiu, J. X.; Lai, C.; Ling, M.; Zhao, H. J.; Zhang, S. Q. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224–230.
Li, N. W.; Yin, Y. X.; Xin, S.; Li, J. Y.; Guo, Y. G. Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods 2017, 1, 1700094.
Yang, Y. F.; Jin, S.; Zhang, Z.; Du, Z. Z.; Liu, H. R.; Yang, J.; Xu, H. X.; Ji, H. X. Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 14180–14186.
Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.
Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927.
Hu, A. J.; Jin, S.; Du, Z. Z.; Jin, H. C.; Ji, H. X. N,S codoped carbon nanorods as anode materials for high-performance lithium and sodium ion batteries. J. Energy Chem. 2018, 27, 203–208.
He, Y. Z.; Han, X. J.; Du, Y. C.; Song, B.; Zhang, B.; Zhang, W.; Xu, P. Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Res. 2018, 11, 2573–2585.
Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.
Jin, Q. Z.; Wang, K. L.; Feng, P. Y.; Zhang, Z. C.; Cheng, S. J.; Jiang, K. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy Storage Mater. 2020, 27, 43–50.
Wang, Y.; Liu, Y. K.; Liu, Y. C.; Shen, Q. Y.; Chen, C. C.; Qiu, F. Y.; Li, P.; Jiao, L. F.; Qu, X. H. Recent advances in electrospun electrode materials for sodium-ion batteries. J. Energy Chem. 2021, 54, 225–241.
Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.
Zhong, W.; Lv, X. S.; Chen, Q. W.; Ren, M. M.; Liu, W. L.; Li, G. D.; Yu, J. X.; Li, M.; Dai, Y.; Wang, L. Z. Metal-organic framework/polythiophene derivative: Neuronlike S-doped carbon 3D structure with outstanding sodium storage performance. ACS Appl. Mater. Interfaces 2019, 11, 37850–37858.
Xia, J.; Jiang, K. Z.; Xie, J. J.; Guo, S. H.; Liu, L.; Zhang, Y.; Nie, S.; Yuan, Y. T.; Yan, H. X.; Wang, X. Y. Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chem. Eng. J. 2019, 359, 1244–1251.
Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.
Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L. Y.; Kim, K. S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C. et al. Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 2012, 12, 4025–4031.
Feng, X.; Bai, Y.; Liu, M. Q.; Li, Y.; Yang, H. Y.; Wang, X. R.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089.
Qiu, C.; Li, M.; Qiu, D. P.; Yue, C.; Xian, L. Y.; Liu, S. Q.; Wang, F.; Yang, R. Ultra-high sulfur-doped hierarchical porous hollow carbon sphere anodes enabling unprecedented durable potassium-ion hybrid capacitors. ACS Appl. Mater. Interfaces 2021, 13, 49942–49951.
Li, H. S.; Zhu, Y.; Dong, S. Y.; Shen, L. F.; Chen, Z. J.; Zhang, X. G.; Yu, G. H. Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem. Mater. 2016, 28, 5753–5760.
Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.
Ruan, J. F.; Mo, F. J.; Chen, Z. L.; Liu, M.; Zheng, S. Y.; Wu, R. B.; Fang, F.; Song, Y.; Sun, D. L. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 2020, 10, 1904045.
Tao, L.; Yang, Y. P.; Wang, H. L.; Zheng, Y. L.; Hao, H. C.; Song, W. P.; Shi, J.; Huang, M. H.; Mitlin, D. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Mater. 2020, 27, 212–225.
Wahid, M.; Puthusseri, D.; Gawli, Y.; Sharma, N.; Ogale, S. Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms. ChemSusChem 2018, 11, 506–526.
Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Li, T. Q.; Han, Y.; Wang, Y. S.; Tian, J.; Lin, N. et al. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 2019, 9, 1901676.
Liu, L.; Chen, Y.; Xie, Y. H.; Tao, P.; Li, Q. Y.; Yan, C. L. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 2018, 28, 1801989.
Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.
Li, J. F.; Han, L.; Zhang, D. F.; Li, J. L.; Lu, T.; Wang, X. H.; Pan, L. K. N, S co-doped porous carbon microtubes with high charge/discharge rates for sodium-ion batteries. Inorg. Chem. Front. 2019, 6, 2104–2111.
Shao, W. L.; Hu, F. Y.; Song, C.; Wang, J. Y.; Liu, C.; Weng, Z. H.; Jian, X. G. Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 2019, 7, 6363–6373.
Qiu, D. P.; Guan, J. Y.; Li, M.; Kang, C. H.; Wei, J. Y.; Li, Y.; Xie, Z. Y.; Wang, F.; Yang, R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.
Li, S. L.; Zhang, J. Q.; Chao, H. X.; Tan, X. J.; Wu, X. C.; He, S. B.; Liu, H. Y.; Wu, M. B. High energy density lithium-ion capacitor enabled by nitrogen-doped amorphous carbon linked hierarchically porous Co3O4 nanofibers anode and porous carbon polyhedron cathode. J. Alloys Compd. 2022, 918, 165726.
Zhang, Z. Y.; Li, M. L.; Gao, Y.; Wei, Z. X.; Zhang, M. N.; Wang, C. Z.; Zeng, Y.; Zou, B.; Chen, G.; Du, F. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 2018, 28, 1802684.
Ren, X. C.; Ren, Z. G.; Li, Q. W.; Wen, W.; Li, X. F.; Chen, Y.; Xie, L.; Zhang, L.; Zhu, D. M.; Gao, B. et al. Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors. Adv. Energy Mater. 2019, 9, 1900091.
Liu, C.; Zhang, M. X.; Zhang, X.; Wan, B.; Li, X. N.; Gou, H. Y.; Wang, Y. X.; Yin, F. X.; Wang, G. K. 2D sandwiched nano heterostructures endow MoSe2/TiO2- x /graphene with high rate and durability for sodium ion capacitor and its solid electrolyte interphase dependent sodiation/desodiation mechanism. Small 2020, 16, 2004457.
Li, H. X.; Lang, J. W.; Lei, S. L.; Chen, J. T.; Wang, K. J.; Liu, L. Y.; Zhang, T. Y.; Liu, W. S.; Yan, X. B. A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 2018, 28, 1800757.
Zhang, L. T.; Sun, J. W.; Zhao, H.; Sun, Y. T.; Dai, L. M.; Yao, F. L.; Fu, Y. S.; Zhu, J. W. Gas expansion-assisted preparation of 3D porous carbon nanosheet for high-performance sodium ion hybrid capacitor. J. Power Sources 2020, 475, 228679.
Yang, B. J.; Chen, J. T.; Lei, S. L.; Guo, R. S.; Li, H. X.; Shi, S. Q.; Yan, X. B. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 2018, 8, 1702409.
Wang, H. L.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J. Mater. Chem. A 2016, 4, 5149–5158.
Li, J.; Wang, B.; Hu, T. Z.; Wang, Y. Z.; Sun, Z. H.; Wang, C. Z.; Zhang, D.; Wang, Z. P.; Li, F. Coupling anodic/cathodic energy storage through in situ heterostructure regulation of ordered microporous carbon for sodium-ion hybrid capacitors. J. Mater. Chem. A 2021, 9, 3360–3368.
Cheng, W. B.; Wan, B.; Xu, S. S.; Zhang, M. X.; Zeng, R. G.; Liu, Z. X.; Zhang, C. W.; Yin, F. X.; Wang, G. K.; Gou, H. Y. Three-dimensional topotactic host structure-secured ultrastable VP-CNO composite anodes for long lifespan lithium- and sodium-ion capacitors. ACS Appl. Mater. Interfaces 2020, 12, 29218–29227.
Lv, C. X.; Xu, W. J.; Liu, H. L.; Zhang, L. X.; Chen, S.; Yang, X. F.; Xu, X. J.; Yang, D. J. 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 2019, 15, 1900816.
He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.