AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Revisiting N, S co-doped carbon materials with boosted electrochemical performance in sodium-ion capacitors: The manipulation of internal electric field

Shuli Li1Jinqiang Zhang2( )Yanan Li3Pengxiang Fan4Mingbo Wu3
Shandong Institute of Petroleum and Chemical Technology, Dongying 257000, China
School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
State key laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Shandong Hi-tech Spring Material Technology Co., Ltd., Dongying 257000, China
Show Author Information

Graphical Abstract

The presence of both pyridinic and pyrrolic nitrogen atoms in the S, N co-doped carbon matrix (S-N-CBFs) generates internal electric fields, synergistically interacting with the doped sulfur atom. This interaction directly impacts the adsorption of sodium ions, ultimately leading to the remarkable performance enhancement in sodium storage.

Abstract

Heteroatom doping has emerged as a prevailing strategy to enhance the storage of sodium ions in carbon materials. However, the underlying mechanism governing the performance enhancement remains undisclosed. Herein, we fabricated N/S co-doped carbon beaded fibers (S-N-CBFs), which exhibited glorious rate performance and durableness in Na+ storage, showcasing no obvious capacity decay even after 3500 cycles. Furthermore, when used as anodes in sodium-ion capacitors, the S-N-CBFs delivered exceptional results, boasting a high energy density of 225 Wh·kg–1, superior power output of 22500 W·kg–1, and outstanding cycling stability with a capacity attenuation of merely 0.014% per cycle after 4000 cycles at 2 A·g–1. Mechanistic investigations revealed that the incorporation of both pyridinic N and pyrrolic N into the carbon matrix of S-N-CBFs induced internal electric fields (IEFs), with the former IEF being stronger than the latter, in conjunction with the doped S atom. Density functional theory calculations further unveiled that the intensity of the IEF directly influenced the adsorption of Na+, thereby resulting in the exceptional performances of S-N-CBFs as sodium-ion storage materials. This work uncovers the pivotal role of IEF in regulating the electronic structure of carbon materials and enhancing their Na+ storage capabilities, providing valuable insights for the development of more advanced electrode materials.

Electronic Supplementary Material

Download File(s)
0098_ESM.pdf (1.4 MB)

References

[1]

Yu, G. H.; Xie, X.; Pan, L. J.; Bao, Z. N.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234.

[2]

Aravindan, V.; Gnanaraj, J.; Lee, Y. S.; Madhavi, S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 2014, 114, 11619–11635.

[3]

Sun, G. Z.; Liu, J. Q.; Zhang, X.; Wang, X. W.; Li, H.; Yu, Y.; Huang, W.; Zhang, H.; Chen, P. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angew. Chem. 2014, 126, 12784–12788.

[4]

Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

[5]

Chen, C.; Huang, Y.; Meng, Z. Y.; Xu, Z. P.; Liu, P. B.; Li, T. H. Multi-heteroatom doped porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage. J. Energy Chem. 2021, 54, 482–492.

[6]

Xiao, X. H.; Duan, X. G.; Song, Z. R.; Deng, X. L.; Deng, W. T.; Hou, H. S.; Zheng, R. J.; Zou, G. Q.; Ji, X. B. High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 2022, 32, 2110476.

[7]

He, L. L.; Sun, W.; Sun, K. N.; Mao, Y. Q.; Deng, T. T.; Fang, L.; Wang, Z. H.; Chen, S. L. Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as high-performance anode materials for superior sodium storage. J. Power Sources 2022, 526, 231019.

[8]

Liu, Y.; Sun, Z. H.; Tan, K.; Denis, D. K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Recent progress in flexible non-lithium based rechargeable batteries. J. Mater. Chem. A 2019, 7, 4353–4382.

[9]

Li, S.; Qiu, J. X.; Lai, C.; Ling, M.; Zhao, H. J.; Zhang, S. Q. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224–230.

[10]

Li, N. W.; Yin, Y. X.; Xin, S.; Li, J. Y.; Guo, Y. G. Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods 2017, 1, 1700094.

[11]

Yang, Y. F.; Jin, S.; Zhang, Z.; Du, Z. Z.; Liu, H. R.; Yang, J.; Xu, H. X.; Ji, H. X. Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 14180–14186.

[12]

Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

[13]

Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927.

[14]

Hu, A. J.; Jin, S.; Du, Z. Z.; Jin, H. C.; Ji, H. X. N,S codoped carbon nanorods as anode materials for high-performance lithium and sodium ion batteries. J. Energy Chem. 2018, 27, 203–208.

[15]

He, Y. Z.; Han, X. J.; Du, Y. C.; Song, B.; Zhang, B.; Zhang, W.; Xu, P. Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Res. 2018, 11, 2573–2585.

[16]

Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.

[17]

Jin, Q. Z.; Wang, K. L.; Feng, P. Y.; Zhang, Z. C.; Cheng, S. J.; Jiang, K. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy Storage Mater. 2020, 27, 43–50.

[18]

Wang, Y.; Liu, Y. K.; Liu, Y. C.; Shen, Q. Y.; Chen, C. C.; Qiu, F. Y.; Li, P.; Jiao, L. F.; Qu, X. H. Recent advances in electrospun electrode materials for sodium-ion batteries. J. Energy Chem. 2021, 54, 225–241.

[19]

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

[20]

Zhong, W.; Lv, X. S.; Chen, Q. W.; Ren, M. M.; Liu, W. L.; Li, G. D.; Yu, J. X.; Li, M.; Dai, Y.; Wang, L. Z. Metal-organic framework/polythiophene derivative: Neuronlike S-doped carbon 3D structure with outstanding sodium storage performance. ACS Appl. Mater. Interfaces 2019, 11, 37850–37858.

[21]

Xia, J.; Jiang, K. Z.; Xie, J. J.; Guo, S. H.; Liu, L.; Zhang, Y.; Nie, S.; Yuan, Y. T.; Yan, H. X.; Wang, X. Y. Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chem. Eng. J. 2019, 359, 1244–1251.

[22]

Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.

[23]

Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L. Y.; Kim, K. S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C. et al. Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 2012, 12, 4025–4031.

[24]

Feng, X.; Bai, Y.; Liu, M. Q.; Li, Y.; Yang, H. Y.; Wang, X. R.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089.

[25]

Qiu, C.; Li, M.; Qiu, D. P.; Yue, C.; Xian, L. Y.; Liu, S. Q.; Wang, F.; Yang, R. Ultra-high sulfur-doped hierarchical porous hollow carbon sphere anodes enabling unprecedented durable potassium-ion hybrid capacitors. ACS Appl. Mater. Interfaces 2021, 13, 49942–49951.

[26]

Li, H. S.; Zhu, Y.; Dong, S. Y.; Shen, L. F.; Chen, Z. J.; Zhang, X. G.; Yu, G. H. Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem. Mater. 2016, 28, 5753–5760.

[27]

Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

[28]

Ruan, J. F.; Mo, F. J.; Chen, Z. L.; Liu, M.; Zheng, S. Y.; Wu, R. B.; Fang, F.; Song, Y.; Sun, D. L. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 2020, 10, 1904045.

[29]

Tao, L.; Yang, Y. P.; Wang, H. L.; Zheng, Y. L.; Hao, H. C.; Song, W. P.; Shi, J.; Huang, M. H.; Mitlin, D. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Mater. 2020, 27, 212–225.

[30]

Wahid, M.; Puthusseri, D.; Gawli, Y.; Sharma, N.; Ogale, S. Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms. ChemSusChem 2018, 11, 506–526.

[31]

Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Li, T. Q.; Han, Y.; Wang, Y. S.; Tian, J.; Lin, N. et al. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 2019, 9, 1901676.

[32]

Liu, L.; Chen, Y.; Xie, Y. H.; Tao, P.; Li, Q. Y.; Yan, C. L. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 2018, 28, 1801989.

[33]

Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.

[34]

Li, J. F.; Han, L.; Zhang, D. F.; Li, J. L.; Lu, T.; Wang, X. H.; Pan, L. K. N, S co-doped porous carbon microtubes with high charge/discharge rates for sodium-ion batteries. Inorg. Chem. Front. 2019, 6, 2104–2111.

[35]

Shao, W. L.; Hu, F. Y.; Song, C.; Wang, J. Y.; Liu, C.; Weng, Z. H.; Jian, X. G. Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 2019, 7, 6363–6373.

[36]

Qiu, D. P.; Guan, J. Y.; Li, M.; Kang, C. H.; Wei, J. Y.; Li, Y.; Xie, Z. Y.; Wang, F.; Yang, R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.

[37]

Li, S. L.; Zhang, J. Q.; Chao, H. X.; Tan, X. J.; Wu, X. C.; He, S. B.; Liu, H. Y.; Wu, M. B. High energy density lithium-ion capacitor enabled by nitrogen-doped amorphous carbon linked hierarchically porous Co3O4 nanofibers anode and porous carbon polyhedron cathode. J. Alloys Compd. 2022, 918, 165726.

[38]

Zhang, Z. Y.; Li, M. L.; Gao, Y.; Wei, Z. X.; Zhang, M. N.; Wang, C. Z.; Zeng, Y.; Zou, B.; Chen, G.; Du, F. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 2018, 28, 1802684.

[39]

Ren, X. C.; Ren, Z. G.; Li, Q. W.; Wen, W.; Li, X. F.; Chen, Y.; Xie, L.; Zhang, L.; Zhu, D. M.; Gao, B. et al. Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors. Adv. Energy Mater. 2019, 9, 1900091.

[40]

Liu, C.; Zhang, M. X.; Zhang, X.; Wan, B.; Li, X. N.; Gou, H. Y.; Wang, Y. X.; Yin, F. X.; Wang, G. K. 2D sandwiched nano heterostructures endow MoSe2/TiO2- x /graphene with high rate and durability for sodium ion capacitor and its solid electrolyte interphase dependent sodiation/desodiation mechanism. Small 2020, 16, 2004457.

[41]

Li, H. X.; Lang, J. W.; Lei, S. L.; Chen, J. T.; Wang, K. J.; Liu, L. Y.; Zhang, T. Y.; Liu, W. S.; Yan, X. B. A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 2018, 28, 1800757.

[42]

Zhang, L. T.; Sun, J. W.; Zhao, H.; Sun, Y. T.; Dai, L. M.; Yao, F. L.; Fu, Y. S.; Zhu, J. W. Gas expansion-assisted preparation of 3D porous carbon nanosheet for high-performance sodium ion hybrid capacitor. J. Power Sources 2020, 475, 228679.

[43]

Yang, B. J.; Chen, J. T.; Lei, S. L.; Guo, R. S.; Li, H. X.; Shi, S. Q.; Yan, X. B. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 2018, 8, 1702409.

[44]

Wang, H. L.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J. Mater. Chem. A 2016, 4, 5149–5158.

[45]

Li, J.; Wang, B.; Hu, T. Z.; Wang, Y. Z.; Sun, Z. H.; Wang, C. Z.; Zhang, D.; Wang, Z. P.; Li, F. Coupling anodic/cathodic energy storage through in situ heterostructure regulation of ordered microporous carbon for sodium-ion hybrid capacitors. J. Mater. Chem. A 2021, 9, 3360–3368.

[46]

Cheng, W. B.; Wan, B.; Xu, S. S.; Zhang, M. X.; Zeng, R. G.; Liu, Z. X.; Zhang, C. W.; Yin, F. X.; Wang, G. K.; Gou, H. Y. Three-dimensional topotactic host structure-secured ultrastable VP-CNO composite anodes for long lifespan lithium- and sodium-ion capacitors. ACS Appl. Mater. Interfaces 2020, 12, 29218–29227.

[47]

Lv, C. X.; Xu, W. J.; Liu, H. L.; Zhang, L. X.; Chen, S.; Yang, X. F.; Xu, X. J.; Yang, D. J. 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 2019, 15, 1900816.

[48]

He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

Nano Research Energy
Cite this article:
Li S, Zhang J, Li Y, et al. Revisiting N, S co-doped carbon materials with boosted electrochemical performance in sodium-ion capacitors: The manipulation of internal electric field. Nano Research Energy, 2024, 3: e9120098. https://doi.org/10.26599/NRE.2023.9120098

2190

Views

427

Downloads

9

Crossref

10

Scopus

Altmetrics

Received: 27 July 2023
Revised: 22 August 2023
Accepted: 30 August 2023
Published: 28 September 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return