AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Cell architecture designs towards high-energy-density microscale energy storage devices

Kwon-Hyung Lee1Sang-Young Lee2( )
Ulsan Advanced Energy Technology R & D Center, Korea Institute of Energy Research (KIER), Ulsan, 44776, Republic of Korea
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
Show Author Information

Graphical Abstract

Achieving both miniaturization and high-energy-density simultaneously is a major challenge for advanced microscale energy storage devices (MESDs). This review explores cell architecture designs of the MESDs, with the aim of enabling small device footprints (< 1 cm2) and high energy densities (> 10 mWh·cm–2).

Abstract

The rapid growth of miniaturized electronics has led to an urgent demand for microscale energy storage devices (MESDs) to sustainably power the micro electronic devices. However, most MESDs reported to date have suffered from the limited energy densities and shape versatility compared to conventional large-scale counterparts because of the architectural constraints inherent in microfabrication-based cell manufacturing and cell dimension/structure. This review addresses the cell architecture design for MESDs that can achieve both miniaturization and high energy density. We provide a comprehensive overview of five types of cell architectures of MESDs and their fabrication techniques. In addition, to enable practical applications of MESDs, several cell design approaches are presented with the aim of minimizing the inactive parts of the cell and maximizing the performance metrics of MESDs. Finally, we discuss development direction and outlook of MESDs with a focus on materials chemistry, energy-dense electrochemical systems, and cell performance normalization, which will help to expand their applications and manufacturing scalability.

References

[1]

Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.

[2]

Li, Y.; Zhu, M. S.; Bandari, V. K.; Karnaushenko, D. D.; Karnaushenko, D.; Zhu, F.; Schmidt, O. G. On-chip batteries for dust-sized computers. Adv. Energy Mater. 2022, 12, 2103641.

[3]

Bassyouni, Z.; Allagui, A.; Abou Ziki, J. D. Microsized electrochemical energy storage devices and their fabrication techniques for portable applications. Adv. Mater. Technol. 2023, 8, 2200459.

[4]

Kyeremateng, N. A.; Hahn, R. Attainable energy density of microbatteries. ACS Energy Lett. 2018, 3, 1172–1175.

[5]

Pikul, J. H.; Ning, H. L. Powering the internet of things. Joule 2018, 2, 1036–1038.

[6]

Zhang, J. H.; Zhang, G. X.; Zhou, T.; Sun, S. H. Recent developments of planar micro-supercapacitors: Fabrication, properties, and applications. Adv. Funct. Mater. 2020, 30, 1910000.

[7]

Zhu, M. S.; Schmidt, O. G. Tiny robots and sensors need tiny batteries‒here’s how to do it. Nature 2021, 589, 195–197.

[8]

Tang, P.; Tan, W. Y.; Li, F. Z.; Xue, S.; Ma, Y. H.; Jing, P. W.; Liu, Y. H.; Zhu, J.; Yan, X. B. A pseudocapacitor diode based on ion-selective surface redox effect. Adv. Mater. 2023, 35, 2209186.

[9]

Tang, P.; Gao, P.; Cui, X. H.; Chen, Z.; Fu, Q. F.; Wang, Z. X.; Mo, Y.; Liu, H.; Xu, C. H.; Liu, J. L. et al. Covalency competition induced active octahedral sites in spinel cobaltites for enhanced pseudocapacitive charge storage. Adv. Energy Mater. 2022, 12, 2102053.

[10]

Tang, P.; Tan, W. Y.; Deng, G. Y.; Zhang, Y. T.; Xu, S.; Wang, Q. J.; Li, G. S.; Zhu, J.; Dou, Q. Y.; Yan, X. B. Understanding pseudocapacitance mechanisms by synchrotron X-ray analytical techniques. Energy Environ. Mater. 2023, 6, e12619.

[11]
Gao, P.; Tang, P.; Mo, Y.; Xiao, P. T.; Zhou, W.; Chen, S.; Dong, H. L.; Li, Z. W.; Xu, C. H.; Liu, J. L. Covalency competition induced selective bond breakage and surface reconstruction in manganese cobaltite towards enhanced electrochemical charge storage. Green Energy Environ. 2022 , in press, DOI: 10.1016/j.gee.2022.10.003.
[12]

Xia, Q. Y.; Zan, F.; Zhang, Q. Y.; Liu, W.; Li, Q. C.; He, Y.; Hua, J. Y.; Liu, J. H.; Xu, J.; Wang, J. S. et al. All-solid-state thin film lithium/lithium-ion microbatteries for powering the internet of things. Adv. Mater. 2023, 35, 2200538.

[13]

Futscher, M. H.; Brinkman, L.; Müller, A.; Casella, J.; Aribia, A.; Romanyuk, Y. E. Monolithically-stacked thin-film solid-state batteries. Commun. Chem. 2023, 6, 110.

[14]

Cras, F. L.; Pecquenard, B.; Dubois, V.; Phan, V. P.; Guy-Bouyssou, D. All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: High performance and memory effect. Adv. Energy Mater. 2015, 5, 1501061.

[15]

Trask, J.; Anapolsky, A.; Cardozo, B.; Januar, E.; Kumar, K.; Miller, M.; Brown, R.; Bhardwaj, R. Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries. J. Power Sources 2017, 350, 56–64.

[16]

Lyu, Z.; Lim, G. J. H.; Koh, J. J.; Li, Y.; Ma, Y. W.; Ding, J.; Wang, J. L.; Hu, Z.; Wang, J.; Chen, W. et al. Design and manufacture of 3D-printed batteries. Joule 2021, 5, 89–114.

[17]

Zhang, W.; Liu, H. Z.; Zhang, X. N.; Li, X. J.; Zhang, G. H.; Cao, P. 3D printed micro-electrochemical energy storage devices: From design to integration. Adv. Funct. Mater. 2021, 31, 2104909.

[18]

Lee, K. H.; Ahn, D. B.; Kim, J. H.; Lee, J. W.; Lee, S. Y. Printed built-in power sources. Matter 2020, 2, 345–359.

[19]

Wei, T. S.; Ahn, B. Y.; Grotto, J.; Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 2018, 30, 1703027.

[20]

Shen, K.; Ding, J. W.; Yang, S. B. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 2018, 8, 1800408.

[21]

Ma, J. X.; Zheng, S. H.; Zhou, F.; Zhu, Y. Y.; Das, P.; Huang, R.; Zhang, L. Z.; Wang, X.; Wang, H.; Cui, Y. et al. All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density. Energy Storage Mater. 2023, 54, 304–312.

[22]

Liu, Y.; Zheng, S. H.; Ma, J. X.; Wang, X.; Zhang, L. Z.; Das, P.; Wang, K.; Wu, Z. S. All 3D printing shape-conformable zinc ion hybrid capacitors with ultrahigh areal capacitance and improved cycle life. Adv. Energy Mater. 2022, 12, 2200341.

[23]

Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 2020, 14, 867–876.

[24]

Jeong, I.; Han, D. Y.; Hwang, J.; Song, W. J.; Park, S. Foldable batteries: From materials to devices. Nanoscale Adv. 2022, 4, 1494–1516.

[25]

Kong, L.; Tang, C.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020, 1, e1007.

[26]

Luo, Z. L.; Liu, C. H.; Fan, S. S. Laser-graving-assisted fabrication of foldable supercapacitors for on-chip energy storage. ACS Appl. Mater. Interfaces 2019, 11, 42172–42178.

[27]

Gaikwad, A. M.; Chu, H. N.; Qeraj, R.; Zamarayeva, A. M.; Steingart, D. A. Reinforced electrode architecture for a flexible battery with paperlike characteristics. Energy Technol. 2013, 1, 177–185.

[28]

Mao, L. J.; Meng, Q. H.; Ahmad, A.; Wei, Z. X. Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 2017, 7, 1700535.

[29]

Lee, K. H.; Kim, S. W.; Kim, M.; Ahn, D. B.; Hong, Y. K.; Kim, S. H.; Lee, J. S.; Lee, S. Y. Folding the energy storage: Beyond the limit of areal energy density of micro-supercapacitors. Adv. Energy Mater. 2023, 13, 2204327.

[30]

Liu, G. Z.; Zhang, X. Y.; Lu, B.; Song, Y. C.; Qiao, Y.; Guo, X. F.; Ao, S. Q.; Zhang, J. Q.; Fang, D. N.; Bao, Y. H. Crocodile skin inspired rigid-supple integrated flexible lithium ion batteries with high energy density and bidirectional deformability. Energy Storage Mater. 2022, 47, 149–157.

[31]

Chen, A.; Guo, X.; Yang, S.; Liang, G. J.; Li, Q.; Chen, Z.; Huang, Z. D.; Yang, Q.; Han, C. P.; Zhi, C. Y. Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: Achieving multiple deformabilities. Energy Environ. Sci. 2021, 14, 3599–3608.

[32]

Liao, X. B.; Shi, C. M.; Wang, T. Y.; Qie, B.; Chen, Y. L.; Yang, P. F.; Cheng, Q.; Zhai, H. W.; Chen, M. J.; Wang, X. et al. High-energy-density foldable battery enabled by zigzag-like design. Adv. Energy Mater. 2019, 9, 1802998.

[33]

Schmidt, O. G.; Eberl, K. Thin solid films roll up into nanotubes. Nature 2001, 410, 168.

[34]

Wang, J. H.; Bandari, V. K.; Karnaushenko, D.; Li, Y.; Li, F.; Zhang, P. P.; Baunack, S.; Karnaushenko, D. D.; Becker, C.; Faghih, M. et al. Self-assembly of integrated tubular microsupercapacitors with improved electrochemical performance and self-protective function. ACS Nano 2019, 13, 8067–8075.

[35]

Li, F.; Wang, J. H.; Liu, L. X.; Qu, J.; Li, Y.; Bandari, V. K.; Karnaushenko, D.; Becker, C.; Faghih, M.; Kang, T. et al. Self-assembled flexible and integratable 3D microtubular asymmetric supercapacitors. Adv. Sci. 2019, 6, 1901051.

[36]

Qu, Z.; Zhu, M. S.; Yin, Y.; Huang, Y.; Tang, H. M.; Ge, J.; Li, Y.; Karnaushenko, D. D.; Karnaushenko, D.; Schmidt, O. G. A sub-square-millimeter microbattery with milliampere-hour-level footprint capacity. Adv. Energy Mater. 2022, 12, 2200714.

[37]

Weng, Q. H.; Wang, S. T.; Liu, L. X.; Lu, X. Y.; Zhu, M. S.; Li, Y.; Gabler, F.; Schmidt, O. G. A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit. Cell Rep. Phys. Sci. 2021, 2, 100429.

[38]

Li, Y.; Zhu, M. S.; Karnaushenko, D. D.; Li, F.; Qu, J.; Wang, J. H.; Zhang, P. P.; Liu, L. X.; Ravishankar, R.; Bandari, V. K. et al. Microbatteries with twin-Swiss-rolls redefine performance limits in the sub-square millimeter range. Nanoscale Horiz. 2023, 8, 127–132.

[39]

Kim, S. H.; Choi, K. H.; Cho, S. J.; Yoo, J.; Lee, S. S.; Lee, S. Y. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 2018, 11, 321–330.

[40]

Wang, Z.; Li, C. N.; Lin, Y. X.; Bian, G.; Zhao, Y. T.; Wang, Y. R.; Yin, J.; Zhu, J. High-performance Zn-ion microbatteries by subtractive manufacturing. ACS Sustainable Chem. Eng. 2023, 11, 6474–6484.

[41]

Yue, X. J.; Grzyb, J.; Padmanacha, A.; Pikul, J. H. A minimal volume hermetic packaging design for high-energy-density micro-energy systems. Energies 2019, 13, 2492.

[42]

Yue, X. J.; Johnson, A. C.; Kim, S.; Kohlmeyer, R. R.; Patra, A.; Grzyb, J.; Padmanabha, A.; Wang, M.; Jiang, Z. M.; Sun, P. C. et al. A nearly packaging-free design paradigm for light, powerful, and energy-dense primary microbatteries. Adv. Mater. 2021, 33, 2101760.

[43]

Kim, S.; Patra, A.; Kohlmeyer, R. R.; Jo, S.; Yue, X. J.; Johnson, A.; Kiggins, C. T.; Zahiri, B.; Jeong, K.; Koo, J. et al. Serially integrated high-voltage and high power miniature batteries. Cell Rep. Phys. Sci. 2023, 4, 101205.

[44]

Laszczyk, K. U.; Kobashi, K.; Sakurai, S.; Sekiguchi, A.; Futaba, D. N.; Yamada, T.; Hata, K. Lithographically integrated microsupercapacitors for compact, high performance, and designable energy circuits. Adv. Energy Mater. 2015, 5, 1500741.

[45]

Zhang, J. G. Anode-less. Nat. Energy 2019, 4, 637–638.

[46]

Xiao, X.; Zheng, Z. Y.; Zhong, X. W.; Gao, R. H.; Piao, Z.; Jiao, M. L.; Zhou, G. M. Rational design of flexible Zn-based batteries for wearable electronic devices. ACS Nano 2023, 17, 1764–1802.

[47]

Yin, L.; Kim, K. N.; Trifonov, A.; Podhajny, T.; Wang, J. Designing wearable microgrids: Towards autonomous sustainable on-body energy management. Energy Environ. Sci. 2022, 15, 82–101.

[48]

Lee, H.; Kim, S.; Kim, K. B.; Choi, J. W. Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 2018, 53, 225–231.

[49]

Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539–4543.

[50]

Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511.

[51]

Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2T x (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640–650.

[52]

Tagliaferri, S.; Nagaraju, G.; Panagiotopoulos, A.; Och, M.; Cheng, G.; Iacoviello, F.; Mattevi, C. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance. ACS Nano 2021, 15, 15342–15353.

[53]

Li, X. R.; Li, H. P.; Fan, X. Q.; Shi, X. L.; Liang, J. J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 2020, 10, 1903794.

[54]

Kalantar-Zadeh, K.; Berean, K. J.; Ha, N. M.; Chrimes, A. F.; Xu, K.; Grando, D.; Ou, J. Z.; Pillai, N.; Campbell, J. L.; Brkljača, R. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 2018, 1, 79–87.

[55]

Ku, M.; Kim, J.; Won, J. E.; Kang, W.; Park, Y. G.; Park, J.; Lee, J. H.; Cheon, J.; Lee, H. H.; Park, J. U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 2020, 6, eabb2891.

[56]

He, Q. G.; Wang, Z. J.; Wang, Y.; Minori, A.; Tolley, M. T.; Cai, S. Q. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci. Adv. 2019, 5, eaax5746.

[57]

Qin, S. S.; Zhang, Q.; Yang, X. X.; Liu, M. M.; Sun, Q. J.; Wang, Z. L. Hybrid piezo/triboelectric-driven self-charging electrochromic supercapacitor power package. Adv. Energy Mater. 2018, 8, 1800069.

Nano Research Energy
Article number: e9120101
Cite this article:
Lee K-H, Lee S-Y. Cell architecture designs towards high-energy-density microscale energy storage devices. Nano Research Energy, 2024, 3: e9120101. https://doi.org/10.26599/NRE.2023.9120101

1794

Views

508

Downloads

2

Crossref

1

Scopus

Altmetrics

Received: 27 July 2023
Revised: 30 August 2023
Accepted: 04 September 2023
Published: 02 November 2023
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return