Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The practicality of conventional solid–liquid phase change materials (PCMs) is adversely restricted by liquid phase leakage, large volume expansion, shape instability, and severe corrosion in high-temperature thermal management systems. This highlight presents the latest development to resolve these challenges by designing ultrahigh-performance high-temperature Ni-Mn-Ti solid–solid PCMs using martensitic phase transition strategy, offering a new paradigm to develop advanced wide-temperature high-temperature metallic solid–solid phase change thermal storage materials.
Zhang, J. Y.; Shao, D.; Jiang, L. Q.; Zhang, G. Q.; Wu, H. W.; Day, R.; Jiang, W. Z. Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2022, 159, 112207.
Luo, J.; Zou, D. Q.; Wang, Y. S.; Wang, S.; Huang, L. Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chem. Eng. J. 2022, 430, 132741.
Liu, Y.; Zheng, R. W.; Li, J. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renew. Sustain. Energy Rev. 2022, 168, 112783.
Wang, G.; Tang, Z. D.; Gao, Y.; Liu, P. P.; Li, Y.; Li, A.; Chen, X. Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 2023, 123, 6953–7024.
Chen, X.; Gao, H. Y.; Tang, Z. D.; Dong, W. J.; Li, A.; Wang, G. Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy Environ. Sci. 2020, 13, 4498–4535.
Liu, P. P.; Chen, X.; Li, Y.; Cheng, P.; Tang, Z. D.; Lv, J. J.; Aftab, W.; Wang, G. Aerogels meet phase change materials: Fundamentals, advances, and beyond. ACS Nano 2022, 16, 15586–15626.
Wu, M. Q.; Wu, S.; Cai, Y. F.; Wang, R. Z.; Li, T. X. Form-stable phase change composites: Preparation, performance, and applications for thermal energy conversion, storage and management. Energy Storage Mater. 2021, 42, 380–417.
Usman, A.; Xiong, F.; Aftab, W.; Qin, M. L.; Zou, R. Q. Emerging solid-to-solid phase-change materials for thermal-energy harvesting, storage, and utilization. Adv. Mater. 2022, 34, 2202457.
Su, W. G.; Darkwa, J.; Kokogiannakis, G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 2015, 48, 373–391.
Li, S. W.; He, L. H.; Lu, H. L.; Hao, J. Z.; Wang, D. K.; Shen, F. R.; Song, C.; Liu, G. J.; Du, P. F.; Wang, Y. D. et al. Ultrahigh-performance solid–solid phase change material for efficient, high-temperature thermal energy storage. Acta Mater. 2023, 249, 118852.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.