AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Interface engineering of Fe-Sn-Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting

Siyu Chen1Ting Zhang1Jingyi Han1Hui Qi2Shihui Jiao1Changmin Hou3Jingqi Guan1( )
Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
The Second Hospital of Jilin University, Changchun 130021, China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Show Author Information

Graphical Abstract

Sn-, Fe-, and Co-based sulfide/oxyhydroxide heterostructural catalyst on nickel foam (FeSnCo0.2SxOy/NF) has good bifunctional activity with low overpotential (η10) values of 186 and 48 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. In addition, the FeSnCo0.2SxOy||FeSnCo0.2SxOy cell requires only 1.54 V to reach 10 mA·cm−2, which is significantly better than IrO2||Pt/C.

Abstract

To realize large-scale hydrogen production by electrolysis of water, it is essential to develop non-precious metal catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we fabricate Sn-, Fe-, and Co-based sulfide/oxyhydroxide heterostructural catalyst on nickel foam (FeSnCo0.2SxOy/NF) by solvothermal method. The FeSnCo0.2SxOy/NF requires low overpotentials of 48 and 186 mV at 10 mA·cm–2, respectively, for HER and OER. When it is assembled into an electrolytic cell as a bifunctional electrocatalyst, it only needs 1.54 V to reach 10 mA·cm–2, far better than IrO2||Pt/C electrolyzer. The formation of sulfide/hydroxide heterostructural interfaces improves the electron transfer and reduces the reaction energy barrier, thus promoting the electrocatalytic processes.

Electronic Supplementary Material

Download File(s)
0106_ESM.pdf (1.5 MB)

References

[1]

Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan, J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.

[2]

Xie, X. H.; Du, L.; Yan, L. T.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv. Funct. Mater. 2022, 32, 2110036.

[3]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

[4]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2021, 15, 38–70.

[5]

Zhang, N.; Hu, Y.; An, L.; Li, Q. Y.; Yin, J.; Li, J. Y.; Yang, R.; Lu, M.; Zhang, S.; Xi, P. X. et al. Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202207217.

[6]

He, W. J.; Han, L. L.; Hao, Q. Y.; Zheng, X. R.; Li, Y.; Zhang, J.; Liu, C. C.; Liu, H.; Xin, H. L. Fluorine-anion-modulated electron structure of nickel sulfide nanosheet arrays for alkaline hydrogen evolution. ACS Energy Lett. 2019, 4, 2905–2912.

[7]

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

[8]

Zhang, H.; Zhou, Y. T.; Xu, M.; Chen, A. R.; Ni, Z. T.; Akdim, O.; Wågberg, T.; Huang, X. Y.; Hu, G. Z. Interface engineering on amorphous/crystalline hydroxides/sulfides heterostructure nanoarrays for enhanced solar water splitting. ACS Nano 2023, 17, 636–647.

[9]

Huang, C. Q.; Zhou, J. Q.; Duan, D. S.; Zhou, Q. C.; Wang, J. M.; Peng, B. W.; Yu, L.; Yu, Y. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism. Chin. J. Catal. 2022, 43, 2091–2110.

[10]

Huang, C. Q.; Zhou, Q. C.; Duan, D. S.; Yu, L.; Zhang, W.; Wang, Z. Z.; Liu, J.; Peng, B. W.; An, P. F.; Zhang, J. et al. The rapid self-reconstruction of Fe-modified Ni hydroxysulfide for efficient and stable large-current-density water/seawater oxidation. Energy Environ. Sci. 2022, 15, 4647–4658.

[11]

Xiao, M.; Zhang, C.; Wang, P.; Zeng, W.; Zhu, J.; Li, Y.; Peng, W.; Liu, Q.; Xu, H.; Zhao, Y. et al. Polymetallic phosphides evolved from MOF and LDH dual-precursors for robust oxygen evolution reaction in alkaline and seawater media. Mater. Today Phys. 2022, 24, 100684.

[12]

Yi, X. R.; He, X. B.; Yin, F. X.; Chen, B. H.; Li, G. R.; Yin, H. Q. Amorphous Ni-Fe-Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting. Dalton Trans. 2020, 49, 6764–6775.

[13]

Naderi, A.; Yong, X.; Karamad, M.; Cai, J. Y.; Zang, Y. P.; Gates, I.; Siahrostami, S.; Wang, G. M. Ternary cobalt-iron sulfide as a robust electrocatalyst for water oxidation: A dual effect from surface evolution and metal doping. Appl. Surf. Sci. 2021, 542, 148681.

[14]

Yu, X.; Zhang, W. W.; She, L. L.; Zhu, Y. Y.; Fautrelle, Y.; Ren, Z. M.; Cao, G. H.; Lu, X. G.; Li, X. Electrodeposition-derived defect-rich heterogeneous trimetallic sulfide/hydroxide nanotubes/nanobelts for efficient electrocatalytic oxygen production. Chem. Eng. J. 2022, 430, 133073.

[15]

Zhang, T.; Han, J. Y.; Tang, T. M.; Sun, J. R.; Guan, J. Q. Binder-free bifunctional SnFe sulfide/oxyhydroxide heterostructure electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2023, 48, 4594–4602.

[16]

Zhang, Q. Q.; Qi, H.; Hou, C. M.; Liu, N.; Guan, J. Q. High-performance Fe-Co-Sn oxide electrocatalysts for oxygen evolution reaction. Mater. Today Energy 2019, 14, 100364.

[17]

Anantharaj, S.; Karthick, K.; Kundu, S. NiTe2 nanowire outperforms Pt/C in high-rate hydrogen evolution at extreme pH conditions. Inorg. Chem. 2018, 57, 3082–3096.

[18]

Anantharaj, S.; Kennedy, J.; Kundu, S. Microwave-initiated facile formation of Ni3Se4 nanoassemblies for enhanced and stable water splitting in neutral and alkaline media. ACS Appl. Mater. Interfaces 2017, 9, 8714–8728.

[19]

Li, Q.; Wang, D. W.; Han, C.; Ma, X.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Construction of amorphous interface in an interwoven NiS/NiS2 structure for enhanced overall water splitting. J. Mater. Chem. A 2018, 6, 8233–8237.

[20]

Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.

[21]

Han, P.; Hua, S. G.; Ji, J.; Wu, Y.; Ma, L.; Xu, H. N.; Sun, X. Q.; Yu, S.; Chen, S. L.; Xiao, J. M. et al. Hierarchical porous structured trimetallic non-oxides CoFeMo-A (A = P, Se) as electrocatalysts for oxygen evolution reaction. J. Alloys Compd. 2023, 932, 167538.

[22]

Liu, Z. Y.; He, Y. J.; Yao, C. M.; Ji, X. Y.; Zhao, B.; Gao, D. J.; Koudakan, P. A. Self-supported Cu-Ni-Se nanostuctures on carbon cloth derived from Cu-Ni-MOF nanorectangles with exceptional electrocatalytic performance for oxygen evolution reaction. J. Phys. Chem. Solids 2022, 163, 110602.

[23]

Zhang, J.; Jang, H.; Chen, L. L.; Jiang, X. L.; Kim, M. G.; Wu, Z. X.; Liu, X. E.; Cho, J. In-situ formed N doped bamboo-like carbon nanotube decorated with Fe-Ni-Cr nanoparticles as efficient electrocatalysts for overall water-splitting. Mater. Chem. Phys. 2020, 241, 122375.

[24]

Wu, Y. H.; Gao, Y.; He, H. W.; Zhang, P. Electrodeposition of self-supported Ni-Fe-Sn film on Ni foam: An efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2019, 301, 39–46.

[25]

Zhao, C. J.; Li, J. W.; Yang, M. Z.; Chen, J.; Xie, F. Y.; Wang, N.; Jin, Y. S.; Yu, X.; Meng, H. S/Se dual-doping promotes the formation of active Ni/Fe oxyhydroxide for oxygen evolution reaction of (sea)water splitting. Int. J. Hydrogen Energy 2022, 47, 21753–21759.

[26]

Xiao, F.; Zhou, P. C.; Weng, R. X.; Yang, P. L.; Tang, W. S.; Liao, L.; Wang, Y.; Zhao, M. J.; Zhang, W. X.; He, P. et al. Co-Mn-S nanosheets decorated with CeO2: A highly active electrocatalyst toward oxygen evolution reaction. J. Alloys Compd. 2022, 901, 163621.

[27]

Zhang, R. L.; Duan, J. J.; Feng, J. J.; Mei, L. P.; Zhang, Q. L.; Wang, A. J. Walnut kernel-like iron-cobalt-nickel sulfide nanosheets directly grown on nickel foam: A binder-free electrocatalyst for high-efficiency oxygen evolution reaction. J. Colloid Interface Sci. 2021, 587, 141–149.

[28]

Zheng, F. Q.; Zhang, Z. W.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z. H.; Li, X. K.; Chen, W. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J. Colloid Interface Sci. 2019, 555, 541–547.

[29]

Tan, J. B.; He, X. B.; Yin, F. X.; Chen, B. H.; Liang, X.; Li, G. R.; Yin, H. Q. Fe doped metal organic framework (Ni)/carbon black nanosheet as highly active electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 21431–21441.

[30]

Jian, J.; Yuan, L.; Qi, H.; Sun, X. J.; Zhang, L.; Li, H.; Yuan, H. M.; Feng, S. H. Sn-Ni3S2 ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential. ACS Appl. Mater. Interfaces 2018, 10, 40568–40576.

[31]

Tan, S. F.; Ouyang, W. M.; Ji, Y. J.; Hong, Q. W. Carbon wrapped bimetallic NiCo nanospheres toward excellent HER and OER performance. J. Alloys Compd. 2021, 889, 161528.

[32]

Wang, C. S.; Yan, B.; Chen, Z. Z.; You, B.; Liao, T.; Zhang, Q.; Lu, Y. Z.; Jiang, S. H.; He, S. J. Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 25773–25795.

[33]

Nie, F.; Li, Z.; Dai, X. P.; Yin, X. L.; Gan, Y. H.; Yang, Z. H.; Wu, B. Q.; Ren, Z. T.; Cao, Y. H.; Song, W. Y. Interfacial electronic modulation on heterostructured NiSe@CoFe LDH nanoarrays for enhancing oxygen evolution reaction and water splitting by facilitating the deprotonation of OH to O. Chem. Eng. J. 2022, 431, 134080.

[34]

Zhang, K.; Wan, T. T.; Wang, H. Y.; Luo, Y. H.; Shi, Y. M.; Zhang, Z. S.; Liu, G. H.; Li, J. D. Decorated oxidation-resistive deficient Titanium oxide nanotube supported NiFe-nanosheets as high-efficiency electrocatalysts for overall water splitting. J. Colloid Interface Sci. 2023, 645, 66–75.

[35]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[36]

Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

[37]

Bolagam, R.; Um, S. Hydrothermal synthesis of cobalt ruthenium sulfides as promising pseudocapacitor electrode materials. Coatings 2020, 10, 200.

[38]

Awadallah, O.; Durygin, A.; Cheng, Z. Unveiling the phase evolution of sol–gel sulfurized Cu2ZnSnS4 thin films in ppm-level H2S: From binary sulfides to quaternary Cu-Zn-Sn-S system. J. Electron. Mater. 2021, 50, 314–324.

[39]

Shi, M. Y.; Tang, T. M.; Xiao, L. Y.; Han, J. Y.; Bai, X.; Sun, Y. H.; Chen, S. Y.; Sun, J. R.; Ma, Y. Y.; Guan, J. Q. Nanoflower-like high-entropy Ni-Fe-Cr-Mn-Co (oxy)hydroxides for oxygen evolution. Chem. Commun. 2023, 59, 11971–11974.

[40]

Zhang, J. Y.; Yan, Y.; Mei, B. B.; Qi, R. J.; He, T.; Wang, Z. T.; Fang, W. S.; Zaman, S.; Su, Y. Q.; Ding, S. J. et al. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365–373.

[41]

Costa, I. M.; Colmenares, Y. N.; Pizani, P. S.; Leite, E. R.; Chiquito, A. J. Sb doping of VLS synthesized SnO2 nanowires probed by Raman and XPS spectroscopy. Chem. Phys. Lett. 2018, 695, 125–130.

Nano Research Energy
Cite this article:
Chen S, Zhang T, Han J, et al. Interface engineering of Fe-Sn-Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting. Nano Research Energy, 2024, 3: e9120106. https://doi.org/10.26599/NRE.2023.9120106

3002

Views

524

Downloads

19

Crossref

21

Scopus

Altmetrics

Received: 10 September 2023
Revised: 16 October 2023
Accepted: 18 October 2023
Published: 22 November 2023
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return