AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Perspective | Open Access

Back-contact configuration energizes perovskite photovoltaic modules

Xiaoyu Yang1( )Yongguang Tu2,3Fengjun Ye3Zheng Bao3
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University Xi’an, Shaanxi 710072, China
Beijing Solarverse Optoelectronic Technology Co., Ltd., Beijing 100176, China
Show Author Information

Graphical Abstract

A novel planar back-contact perovskite solar-cell module was proposed as a promising candidate to improve the competitiveness of perovskite technology in the photovoltaic market.

Abstract

In this viewpoint, recent hot topics in the photovoltaic community, interdigitated back contact (IBC) cells, are systematically reviewed from the view of device configuration. Two categories of IBC designs on the most popular perovskite solar cells (PSCs) were discussed, and a planar back-contact perovskite module was first proposed. The device configuration, fabrication methods, working mechanism, optimization strategies, and future development directions of this novel PSC module were put forward to show its superiorities in the module performance, processing difficulty, and extensible functionality among present perovskite modules, presenting promising potential to improve the competitiveness of perovskite technology in the photovoltaic market.

References

[1]
Christensen, E. Flat-Plate Solar Array Project: 10 years of progress, no. 400 (Jet Propulsion Laboratory, 1985).
[2]

Mandelkorn, J.; Lamneck, J. H. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells. Sol. Cells 1990, 29, 121–130.

[3]

Green, M. A. The passivated emitter and rear cell (PERC): From conception to mass production. Sol. Energy Mater. Sol. Cells 2015, 143, 190–197.

[4]

Blakers, A. Development of the PERC solar cell. IEEE J. Photovoltaics 2019, 9, 629–635.

[5]

Guillemoles, J. F.; Kirchartz, T.; Cahen, D.; Rau, U. Guide for the perplexed to the Shockley-Queisser model for solar cells. Nat. Photonics 2019, 13, 501–505.

[6]

Feldmann, F.; Bivour, M.; Reichel, C.; Hermle, M.; Glunz, S. W. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 2014, 120, 270–274.

[7]

Tanaka, M.; Taguchi, M.; Matsuyama, T.; Sawada, T.; Tsuda, S.; Nakano, S.; Hanafusa, H.; Kuwano, Y. Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Jpn. J. Appl. Phys. 1992, 31, 3518.

[8]

Lammert, M. D.; Schwartz, R. J. The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight. IEEE Trans. Electron Devices 1977, 24, 337–342.

[9]

Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032.

[10]

Wang, Y.; Yang, H.; Zhang, K.; Tao, M. Q.; Li, M. Z.; Song, Y. L. Tautomeric passivation strategy-assisted photostable perovskite solar modules. ACS Energy Lett. 2022, 7, 3646–3652.

[11]

Bu, T. L.; Li, J.; Li, H. Y.; Tian, C. C.; Su, J.; Tong, G. Q.; Ono, L. K.; Wang, C.; Lin, Z. P.; Chai, N. Y. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 2021, 372, 1327–1332.

[12]

Zhao, Y.; Ma, F.; Qu, Z. H.; Yu, S. Q.; Shen, T.; Deng, H. X.; Chu, X. B.; Peng, X. X.; Yuan, Y. B.; Zhang, X. W. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534.

[13]

Lin, R. X.; Wang, Y. R.; Lu, Q. W.; Tang, B. B.; Li, J. Y.; Gao, H.; Gao, Y.; Li, H. J.; Ding, C. Z.; Wen, J. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 2023, 620, 994–1000.

[14]

Ye, Y. X.; Yin, Y. Q.; Chen, Y.; Li, S.; Li, L.; Yamauchi, Y. Metal-organic framework materials in perovskite solar cells: Recent advancements and perspectives. Small 2023, 19, 2208119.

[15]

Yin, Y. Q.; Wang, M. Q.; Malgras, V.; Yamauchi, Y. Stable and efficient tin-based perovskite solar cell via semiconducting-insulating structure. ACS Appl. Energy Mater. 2020, 3, 10447–10452.

[16]

Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.

[17]
NREL. Best research-cell efficiencies [Online]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf (Accessed July 10, 2023).
[18]

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

[19]

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

[20]

Yang, X. Y.; Fu, Y. Q.; Su, R.; Zheng, Y. F.; Zhang, Y. Z.; Yang, W. Q.; Yu, M. T.; Chen, P.; Wang, Y. J.; Wu, J. et al. Superior carrier lifetimes exceeding 6 µs in polycrystalline halide perovskites. Adv. Mater. 2020, 32, 2002585.

[21]

Guo, J. H.; Wang, B. Z.; Lu, D.; Wang, T.; Liu, T. T.; Wang, R.; Dong, X. Y.; Zhou, T.; Zheng, N.; Fu, Q. et al. Ultralong carrier lifetime exceeding 20 µs in lead halide perovskite film enable efficient solar cells. Adv. Mater. 2023, 35, 2212126.

[22]

Yang, Z. H.; Yang, W. C.; Yang, X.; Greer, J. C.; Sheng, J.; Yan, B. J.; Ye, J. C. Device physics of back-contact perovskite solar cells. Energy Environ. Sci. 2020, 13, 1753–1765.

[23]

Shalenov, E. O.; Dzhumagulova, K. N.; Seitkozhanov, Y. S.; Ng, A.; Valagiannopoulos, C.; Jumabekov, A. N. Insights on desired fabrication factors from modeling sandwich and quasi-interdigitated back-contact perovskite solar cells. ACS Appl. Energy Mater. 2021, 4, 1093–1107.

[24]

Yang, W. C.; Yang, Z. H.; Shou, C. H.; Sheng, J.; Yan, B. J.; Ye, J. C. Optical design and optimization for back-contact perovskite solar cells. Solar Energy 2020, 201, 84–91.

[25]

Shalenov, E. O.; Seitkozhanov, Y. S.; Valagiannopoulos, C.; Ng, A.; Dzhumagulova, K. N.; Jumabekov, A. N. Performance evaluation of different designs of back-contact perovskite solar cells. Sol. Energy Mater. Sol. Cells 2022, 234, 111426.

[26]

Huang, X. J.; Fan, D. J.; Li, Y. X.; Forrest, S. R. Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module. Joule 2022, 6, 1581–1589.

[27]

Wong-Stringer, M.; Routledge, T. J.; Mcardle, T.; Wood, C. J.; Game, O. S.; Smith, J. A.; Bishop, J. E.; Vaenas, N.; Coles, D. M.; Buckley, A. R. et al. A flexible back-contact perovskite solar micro-module. Energy Environ. Sci. 2019, 12, 1928–1937.

[28]

Yang, X. Y.; Ma, L.; Li, L.; Luo, M.; Wang, X.; Gong, Q. H.; Lu, C. J.; Zhu, R. Towards micro-PeLED displays. Nat. Rev. Mater. 2023, 8, 341–353.

Nano Research Energy
Article number: e9120111
Cite this article:
Yang X, Tu Y, Ye F, et al. Back-contact configuration energizes perovskite photovoltaic modules. Nano Research Energy, 2024, 3: e9120111. https://doi.org/10.26599/NRE.2024.9120111

1062

Views

176

Downloads

1

Crossref

1

Scopus

Altmetrics

Received: 20 December 2023
Accepted: 04 January 2024
Published: 11 January 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return