Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Since lithium sulfur (Li-S) energy storage devices are anticipated to power portable gadgets and electric vehicles owing to their high energy density (2600 Wh·kg–1); nevertheless, their usefulness is constrained by sluggish sulfur reaction kinetics and soluble lithium polysulfide (LPS) shuttling effects. High electrically conductive bifunctional electrocatalysts are urgently needed for Li-S batteries, and high-entropy oxide (HEO) is one of the most promising electrocatalysts. In this work, we synthesize titanium-containing high entropy oxide (Ti-HEO) (TiFeNiCoMg)O with enhanced electrical conductivity through calcining metal-organic frameworks (MOF) templates at modest temperatures. The resulting single-phase Ti-HEO with high conductivity could facilitate chemical immobilization and rapid bidirectional conversion of LPS. As a result, the Ti-HEO/S/KB cathode (with 70 wt.% of sulfur) achieves an initial discharge capacity as high as ~1375 mAh·g–1 at 0.1 C, and a low-capacity fade rate of 0.056% per cycle over 1000 cycles at 0.5 C. With increased sulfur loading (~5.0 mg·cm–2), the typical Li-S cell delivered a high initial discharge capacity of ~607 mAh·g–1 at 0.2 C and showcased good cycling stability. This work provides better insight into the synthesis of catalytic Ti-containing HEOs with enhanced electrical conductivity, which are effective in simultaneously enhancing the LPS-conversion kinetics and reducing the LPS shuttling effect.
Zhou, G. M.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319.
Xiang, Y. Y.; Lu, L. Q.; Kottapalli, A. G. P.; Pei, Y. T. Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium-sulfur batteries. Carbon Energy 2022, 4, 346–398.
Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.
Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.
Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.
Boyjoo, Y.; Shi, H. D.; Tian, Q.; Liu, S. M.; Liang, J.; Wu, Z. S.; Jaroniec, M.; Liu, J. Engineering nanoreactors for metal-chalcogen batteries. Energy Environ. Sci. 2021, 14, 540–575.
Zhang, J.; Li, M. N.; Younus, H. A.; Wang, B. S.; Weng, Q. H.; Zhang, Y.; Zhang, S. G. An overview of the characteristics of advanced binders for high-performance Li-S batteries. Nano Mater. Sci. 2021, 3, 124–139.
Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821–9826.
Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 2015, 5, 1401986.
Majumder, S.; Shao, M. H.; Deng, Y. F.; Chen, G. H. Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries. J. Power Sources 2019, 431, 93–104.
Majumder, S.; Shao, M. H.; Deng, Y. F.; Chen, G. H. Two dimensional WS2/C nanosheets as a polysulfides immobilizer for high performance lithium-sulfur batteries. J. Electrochem. Soc. 2019, 166, A5386–A5395.
Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.
Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.
Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.
Xiao, Q. H. Q.; Yang, J. L.; Wang, X. D.; Deng, Y. R.; Han, P.; Yuan, N.; Zhang, L.; Feng, M.; Wang, C. A.; Liu, R. P. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective. Carbon Energy 2021, 3, 271–302.
Raza, H.; Bai, S. Y.; Cheng, J. Y.; Majumder, S.; Zhu, H.; Liu, Q.; Zheng, G. P.; Li, X. F.; Chen, G. H. Li-S batteries: Challenges, achievements and opportunities. Electrochem. Energy Rev. 2023, 6, 29.
Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium-sulfur batteries. Nano Energy 2019, 60, 743–751.
Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388.
Shi, H. D.; Qin, J. Q.; Huang, K.; Lu, P. F.; Zhang, C. F.; Dong, Y. F.; Ye, M.; Liu, Z. M.; Wu, Z. S. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem. 2020, 132, 12245–12251.
Ci, H. N.; Shi, Z. X.; Wang, M. L.; He, Y.; Sun, J. Y. A review in rational design of graphene toward advanced Li-S batteries. Nano Res. Energy 2023, 2, e9120054.
Sun, D. D.; Sun, Z. P.; Yang, D. H.; Jiang, X. F.; Tang, J.; Wang, X. B. Advances in boron nitride-based materials for electrochemical energy storage and conversion. EcoEnergy 2023, 1, 375–404.
Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.
He, J. R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.
Wang, Y. C.; Pu, Y. R.; Yuan, L.; Zhang, Y.; Liu, C.; Wang, Q.; Wu, H. Synergistic effect of WN/Mo2C embedded in bioderived carbon nanofibers: A rational design of a shuttle inhibitor and an electrocatalyst for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 18578–18588.
Wang, S. N.; Hu, R. M.; Yuan, D.; Zhang, L.; Wu, C.; Ma, T. Y.; Yan, W.; Wang, R.; Liu, L.; Jiang, X. C. et al. Single-atomic tungsten-doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium-sulfur batteries. Carbon Energy 2023, 5, e329.
Wang, Z. F.; Yan, Y. J.; Zhang, Y. G.; Chen, Y. X.; Peng, X. Y.; Wang, X.; Zhao, W. M.; Qin, C. L.; Liu, Q.; Liu, X. J. et al. Single-atomic Co-B2N2 sites anchored on carbon nanotube arrays promote lithium polysulfide conversion in lithium-sulfur batteries. Carbon Energy 2023, 5, e306.
Shi, H. D.; Qin, J. Q.; Lu, P. F.; Dong, C.; He, J.; Chou, X. J.; Das, P.; Wang, J. M.; Zhang, L. Z.; Wu, Z. S. Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries. Adv. Funct. Mater. 2021, 31, 2102314.
Abraham, A. M.; Boteju, T.; Ponnurangam, S.; Thangadurai, V. A global design principle for polysulfide electrocatalysis in lithium-sulfur batteries-A computational perspective. Battery Energy 2022, 1, 20220003.
Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.
Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823.
Wang, Q. S.; Sarkar, A.; Li, Z. Y.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B. High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 2019, 100, 121–125.
Ghigna, P.; Airoldi, L.; Fracchia, M.; Callegari, D.; Anselmi-Tamburini, U.; D’Angelo, P.; Pianta, N.; Ruffo, R.; Cibin, G. ; de Souza, D. O. et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study. ACS Appl. Mater. Interfaces 2020, 12, 50344–50354.
Tian, L. Y.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 645–654.
Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G. ; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.
Chen, Y. W.; Fu, H. Y.; Huang, Y. Y.; Huang, L. Q.; Zheng, X. Y.; Dai, Y. M.; Huang, Y. H.; Luo, W. Opportunities for high-entropy materials in rechargeable batteries. ACS Mater. Lett. 2021, 3, 160–170.
Tsau, C. H.; Yang, Y. C.; Lee, C. C.; Wu, L. Y.; Huang, H. J. The low electrical resistivity of the high-entropy alloy oxide thin films. Procedia Eng. 2012, 36, 246–252.
Yang, Y. C.; Tsau, C. H.; Yeh, J. W. TiFeCoNi oxide thin film-A new composition with extremely low electrical resistivity at room temperature. Scr. Mater. 2011, 64, 173–176.
Raza, H.; Cheng, J. Y.; Lin, C.; Majumder, S.; Zheng, G. P.; Chen, G. H. High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 2023, 5, e12324.
Raza, H.; Cheng, J. Y.; Chen, G. H.; Zheng, G. P. Low-temperature calcination of metal-organic frameworks (MOFs) to derive the high entropy stabilized oxide for high performance lithium-sulfur batteries. ECS Meet. Abstr. 2022, 1MA2022-0, 2432.
Cheng, J. Y.; Ran, S. J.; Li, T.; Yan, M.; Wu, J.; Boles, S.; Liu, B.; Raza, H.; Ullah, S.; Zhang, W. J. et al. Achieving superior tensile performance in individual metal-organic framework crystals. Adv. Mater. 2023, 35, 2210829.
Zheng, Y. N.; Yi, Y. K.; Fan, M. H.; Liu, H. Y.; Li, X.; Zhang, R.; Li, M. T.; Qiao, Z. A. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 2019, 23, 678–683.
Kheradmandfard, M.; Minouei, H.; Tsvetkov, N.; Vayghan, A. K.; Kashani-Bozorg, S. F.; Kim, G.; Hong, S. I.; Kim, D. E. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Mater. Chem. Phys. 2021, 262, 124265.
Qiu, N.; Chen, H.; Yang, Z. M.; Sun, S.; Wang, Y.; Cui, Y. H. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 2019, 777, 767–774.
Khan, N. A.; Akhavan, B.; Zheng, Z.; Liu, H. W.; Zhou, C. F.; Zhou, H. R.; Chang, L.; Wang, Y.; Liu, Y. P.; Sun, L. X. et al. Nanostructured AlCoCrCu0.5FeNi high entropy oxide (HEO) thin films fabricated using reactive magnetron sputtering. Appl. Surf. Sci. 2021, 553, 149491.
Zhao, X. J.; Gao, T. Q.; Yuan, Y.; Fang, Z. Hollow slightly oxidized CoP confined into flyover-type carbon skeleton with multiple channels as an effective adsorption-catalysis matrix for robust Li-S batteries. Electrochim. Acta 2022, 422, 140512.
Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486.
Li, W. L.; Qian, J.; Zhao, T.; Ye, Y. S.; Xing, Y.; Huang, Y. X.; Wei, L.; Zhang, N. X.; Chen, N.; Li, L. et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure. Adv. Sci. 2019, 6, 1802362.
Zhou, L.; Danilov, D. L.; Qiao, F.; Eichel, R. A.; Notten, P. H. L. ZnFe2O4 hollow rods enabling accelerated polysulfide conversion for advanced lithium-sulfur batteries. Electrochim. Acta 2022, 414, 140231.
Wang, S. X.; Liu, X. Y.; Duan, H. H.; Deng, Y. F.; Chen, G. H. Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: A thin functional interlayer for PP separator to boost performance of Li-S batteries. Chem. Eng. J. 2021, 415, 129001.
Mu, J. W.; Jiang, H. L.; Yu, M.; Gu, S. H.; He, G. H.; Dai, Y.; Li, X. C. Thiophilic-lithiophilic hierarchically porous membrane-enabled full lithium-sulfur battery with a low N/P ratio. ACS Appl. Mater. Interfaces 2022, 14, 23408–23419.
Abualela, S.; Lv, X. X.; Hu, Y.; Abd-Alla, M. D. NiO nanosheets grown on carbon cloth as mesoporous cathode for high-performance lithium-sulfur battery. Mater. Lett. 2020, 268, 127622.
Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.
Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes. Nano Res. Energy 2022, 1, e9120012.
Qi, C.; Li, H. L.; Wang, J.; Zhao, C. C.; Fu, C. M.; Wang, L. N.; Liu, T. X. Metal-organic-framework-derived porous carbon embedded with TiO2 nanoparticles as a cathode for advanced lithium-sulfur batteries. ChemElectroChem 2021, 8, 90–95.
Liu, M. T.; Jhulki, S.; Sun, Z. F.; Magasinski, A.; Hendrix, C.; Yushin, G. Atom-economic synthesis of Magnéli phase Ti4O7 microspheres for improved sulfur cathodes for Li-S batteries. Nano Energy 2021, 79, 105428.
Wu, H. W.; Hu, X. J.; Shao, M. H.; Zhang, S. W.; Chen, G. H. Encapsulating sulphur inside Magnéli phase Ti4O7 nanotube array for high performance lithium sulphur battery cathode. Can. J. Chem. Eng. 2022, 100, 2417–2431.
Liu, H. T.; Liu, F.; Qu, Z. H.; Chen, J. L.; Liu, H.; Tan, Y. Q.; Guo, J. B.; Yan, Y.; Zhao, S.; Zhao, X. S. et al. High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy 2023, 2, e9120049.
Xiao, S. J.; Huang, L.; Lv, W.; He, Y. B. A highly efficient ion and electron conductive interlayer to achieve low self-discharge of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 1783–1790.
Knap, V.; Stroe, D. I.; Swierczynski, M.; Teodorescu, R.; Schaltz, E. Investigation of the self-discharge behavior of lithium-sulfur batteries. J. Electrochem. Soc. 2016, 163, A911–A916.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.