AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Dual active sites engineering of electrocatalysts for alkaline hydrogen evolution

Wankun Gou1Hongming Sun1( )Fangyi Cheng2( )
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
College of Chemistry, Nankai University, Tianjin 300071, China
Show Author Information

Graphical Abstract

Overview on alkaline HER electrocatalysts with dual active sites, focusing on component design, interface engineering, catalytic performance and synergistic catalysis mechanism.

Abstract

Hydrogen evolution reaction (HER) in alkaline medium plays an important role in producing green hydrogen but suffers from sluggish reaction kinetics owing to additional water dissociation step. Extensive research interest has been placed on engineering dual active sites (i.e., water-dissociation sites and hydrogen-adsorption/recombination sites) within a catalyst to enhance the HER activity. This article reviews recent progress in developing alkaline HER catalysts with high-efficiency dual active sites via strategies of heterogeneous interfaces constructing and heteroatoms doping or alloying. The latest advances in the component design, synthetic strategy, catalytic performance, and mechanistic understanding are discussed with selective examples of the hybrid between metal/alloy or metal phosphide/nitride/sulfide and transition metal hydroxides, oxyhydroxide or bicarbonates. Furthermore, remaining challenges and perspectives in the field of dual-site engineering are highlighted for future development of better alkaline HER electrocatalysts.

References

[1]

Lai, W. H.; Zhang, L. F.; Hua, W. B.; Indris, S.; Yan, Z. C.; Hu, Z.; Zhang, B. W.; Liu, Y. N.; Wang, L.; Liu, M. et al. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873.

[2]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

[3]

Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Cheng, F. Y.; Weiss, P. S.; Chen, J. Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 2017, 29, 8539–8547.

[4]

Wang, T. Z.; Cao, X. J.; Jiao, L. F. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 2021, 1, 69–74.

[5]

Hussain, S. N.; Men, Y.; Li, Z.; Zhao, P. P.; Cheng, G. Z.; Luo, W. Molybdenum-induced tuning 3d-orbital electron filling degree of CoSe2 for alkaline hydrogen and oxygen evolution reactions. Chin. Chem. Lett. 2023, 34, 107364.

[6]

Cao, D.; Xu, H. X.; Cheng, D. J. Construction of defect-rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values. Adv. Energy Mater. 2020, 10, 1903038.

[7]
Ou, Y. Q.; Liu, L.; Peng, X.; Zhang, L. L.; Ou, Z. W.; Zhang, W. D.; Zhang, Y. H. Structure transformation induced bi-component Co-Mo/A-Co(OH)2 as highly efficient hydrogen evolution catalyst in alkaline media. Nano Mater. Sci., in press, DOI: 10.1016/j.nanoms.2023.11.006.
[8]

Wang, X. S.; Zheng, Y.; Sheng, W. C.; Xu, Z. J.; Jaroniec, M.; Qiao, S. Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125–138.

[9]

Chen, K.; Deng, S. F.; Lu, Y.; Gong, M. X.; Hu, Y. Z.; Zhao, T. H.; Shen, T.; Wang, D. L. Molybdenum-doped titanium dioxide supported low-Pt electrocatalyst for highly efficient and stable hydrogen evolution reaction. Chin. Chem. Lett. 2021, 32, 765–769.

[10]

Li, Z. Y.; Wang, W. T.; Qian, Q. Z.; Zhu, Y.; Feng, Y. F.; Zhang, Y. Y.; Zhang, H. K.; Cheng, M. Y.; Zhang, G. Q. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production. eScience 2022, 2, 416–427.

[11]

Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

[12]

Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031.

[13]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

[14]

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3 dM(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

[15]

Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci. 2018, 5, 1700464.

[16]

Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

[17]

Xue, S.; Haid, R. W.; Kluge, R. M.; Ding, X.; Garlyyev, B.; Fichtner, J.; Watzele, S.; Hou, S. J.; Bandarenka, A. S. Enhancing the hydrogen evolution reaction activity of platinum electrodes in alkaline media using nickel-iron clusters. Angew. Chem., Int. Ed. 2020, 59, 10934–10938.

[18]

Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.

[19]

Gao, X. Y.; Li, B.; Sun, X. Z.; Wu, B. F.; Hu, Y. P.; Ning, Z. C.; Li, J.; Wang, N. Engineering heterostructure and crystallinity of Ru/RuS2 nanoparticle composited with N-doped graphene as electrocatalysts for alkaline hydrogen evolution. Chin. Chem. Lett. 2021, 32, 3591–3595.

[20]

Chen, Y.; Rao, Y.; Wang, R. Z.; Yu, Y. N.; Li, Q. L.; Bao, S. J.; Xu, M. W.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 2020, 13, 2407–2412.

[21]

Kim, J.; Jung, H.; Jung, S. M.; Hwang, J.; Kim, D. Y.; Lee, N.; Kim, K. S.; Kwon, H.; Kim, Y. T.; Han, J. W. et al. Tailoring binding abilities by incorporating oxophilic transition metals on 3D nanostructured Ni arrays for accelerated alkaline hydrogen evolution reaction. J. Am. Chem. Soc. 2021, 143, 1399–1408.

[22]

Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 22062–22069.

[23]

Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

[24]

Guo, X.; Wan, X.; Liu, Q. T.; Li, Y. C.; Li, W. W.; Shui, J. L. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2022, 2, 304–310.

[25]

Wei, J. M.; Zhou, M.; Long, A. C.; Xue, Y. M.; Liao, H. B.; Wei, C.; Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro. Lett. 2018, 10, 75.

[26]

Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S. C.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

[27]

Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.

[28]

Yu, X. W.; Zhao, J.; Zheng, L. R.; Tong, Y.; Zhang, M.; Xu, G. C.; Li, C.; Ma, J.; Shi, G. Q. Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum. ACS Energy Lett. 2018, 3, 237–244.

[29]

Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

[30]

Panda, C.; Menezes, P. W.; Yao, S. L.; Schmidt, J.; Walter, C.; Hausmann, J. N.; Driess, M. Boosting electrocatalytic hydrogen evolution activity with a NiPt3@NiS heteronanostructure evolved from a molecular nickel-platinum precursor. J. Am. Chem. Soc. 2019, 141, 13306–13310.

[31]

Xiao, X.; Wang, X. K.; Jiang, X. X.; Song, S. W.; Huang, D. K.; Yu, L.; Zhang, Y.; Chen, S.; Wang, M. K.; Shen, Y. et al. In situ growth of Ru nanoparticles on (Fe, Ni)(OH)2 to boost hydrogen evolution activity at high current density in alkaline media. Small Methods 2020, 4, 1900796.

[32]

Hong, Y. R.; Dutta, S.; Jang, S. W.; Okello, O. F. N.; Im, H.; Choi, S. Y.; Han, J. W.; Lee, I. S. Crystal facet-manipulated 2D Pt nanodendrites to achieve an intimate heterointerface for hydrogen evolution reactions. J. Am. Chem. Soc. 2022, 144, 9033–9043.

[33]

Wang, L. M.; Zhang, L. L.; Ma, W.; Wan, H.; Zhang, X. J.; Zhang, X.; Jiang, S. Y.; Zheng, J. Y.; Zhou, Z. In situ anchoring massive isolated Pt atoms at cationic vacancies of α-Ni x Fe1– x (OH)2 to regulate the electronic structure for overall water splitting. Adv. Funct. Mater. 2022, 32, 2203342.

[34]

Liu, H. H.; Yan, Z. H.; Chen, X.; Li, J. H.; Zhang, L.; Liu, F. M.; Fan, G. L.; Cheng, F. Y. Electrodeposition of Pt-decorated Ni(OH)2/CeO2 hybrid as superior bifunctional electrocatalyst for water splitting. Research 2020, 2020, 9068270.

[35]

Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.

[36]

Weng, Z.; Liu, W.; Yin, L. C.; Fang, R. P.; Li, M.; Altman, E. I.; Fan, Q.; Li, F.; Cheng, H. M.; Wang, H. L. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 2015, 15, 7704–7710.

[37]

Luo, Y. T.; Li, X.; Cai, X. K.; Zou, X. L.; Kang, F. Y.; Cheng, H. M.; Liu, B. L. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 2018, 12, 4565–4573.

[38]

Yao, N.; Li, P.; Zhou, Z. R.; Zhao, Y. M.; Cheng, G. Z.; Chen, S. L.; Luo, W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv. Energy Mater. 2019, 9, 1902449.

[39]

Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.

[40]

Lao, M. M.; Rui, K.; Zhao, G. Q.; Cui, P. X.; Zheng, X. S.; Dou, S. X.; Sun, W. P. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem., Int. Ed. 2019, 58, 5432–5437.

[41]

Hu, J.; Zhang, C. X.; Yang, P.; Xiao, J. Y.; Deng, T.; Liu, Z. Y.; Huang, B. L.; Leung, M. K. H.; Yang, S. H. Kinetic-oriented construction of MoS2 synergistic interface to boost pH-universal hydrogen evolution. Adv. Funct. Mater. 2020, 30, 1908520.

[42]

He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

[43]

Jiang, X. L.; Jang, H.; Liu, S. G.; Li, Z. J.; Kim, M. G.; Li, C.; Qin, Q.; Liu, X. E.; Cho, J. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 4110–4116.

[44]

Zhou, P.; Zhai, G. Y.; Lv, X. S.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect. Appl. Catal. B: Environ. 2021, 283, 119590.

[45]

Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

[46]

Wang, J. S.; Xin, S. S.; Xiao, Y.; Zhang, Z. F.; Li, Z. M.; Zhang, W.; Li, C. J.; Bao, R.; Peng, J.; Yi, J. H. et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202202518.

[47]

Sun, H. M.; Yan, Z. H.; Tian, C. Y.; Li, C.; Feng, X.; Huang, R.; Lan, Y. H.; Chen, J.; Li, C. P.; Zhang, Z. H. et al. Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 3857.

[48]

Li, C.; Jang, H.; Kim, M. G.; Hou, L. Q.; Liu, X. E.; Cho, J. Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction. Appl. Catal. B: Environ. Energy 2022, 307, 121204.

[49]

Sun, H. M.; Yao, B. C.; Han, Y. X.; Yang, L.; Zhao, Y. D.; Wang, S. Y.; Zhong, C. Y.; Chen, J.; Li, C. P.; Du, M. Multi-interface engineering of self-supported nickel/yttrium oxide electrode enables kinetically accelerated and ultra-stable alkaline hydrogen evolution at industrial-level current density. Adv. Energy Mater. 2024, 14, 2303563.

[50]

Tan, H.; Tang, B.; Lu, Y.; Ji, Q. Q.; Lv, L. Y.; Duan, H. L.; Li, N.; Wang, Y.; Feng, S. H.; Li, Z. et al. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat. Commun. 2022, 13, 2024.

[51]

Shen, F. Y.; Zhang, Z. H.; Wang, Z.; Ren, H.; Liang, X. H.; Cai, Z. J.; Yang, S. T.; Sun, G. D.; Cao, Y. N.; Yang, X. Z. et al. Oxophilic Ce single atoms-triggered active sites reverse for superior alkaline hydrogen evolution. Nat. Commun. 2024, 15, 448.

[52]

Chen, W. S.; Gu, J. J.; Du, Y. P.; Song, F.; Bu, F. X.; Li, J. H.; Yuan, Y.; Luo, R. C.; Liu, Q. L.; Zhang, D. Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets. Adv. Funct. Mater. 2020, 30, 2000551.

[53]

Dong, Z. H.; Lin, F.; Yao, Y. H.; Jiao, L. F. Crystalline Ni(OH)2/amorphous NiMoO x mixed-catalyst with Pt-like performance for hydrogen production. Adv. Energy Mater. 2019, 9, 1902703.

[54]

Peng, L. S.; Liao, M. S.; Zheng, X. Q.; Nie, Y.; Zhang, L.; Wang, M. J.; Xiang, R.; Wang, J.; Li, L.; Wei, Z. D. Accelerated alkaline hydrogen evolution on M(OH) x /M-MoPO x (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps. Chem. Sci. 2020, 11, 2487–2493.

[55]

Gong, M.; Zhou, W.; Kenney, M. J.; Kapusta, R.; Cowley, S.; Wu, Y. P.; Lu, B. A.; Lin, M. C.; Wang, D. Y.; Yang, J. et al. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting. Angew. Chem., Int. Ed. 2015, 54, 11989–11993.

[56]

Zhao, L.; Zhang, Y.; Zhao, Z. L.; Zhang, Q. H.; Huang, L. B.; Gu, L.; Lu, G.; Hu, J. S.; Wan, L. J. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 2020, 7, 27–36.

[57]

Huang, J. Z.; Han, J. C.; Wu, T.; Feng, K.; Yao, T.; Wang, X. J.; Liu, S. W.; Zhong, J.; Zhang, Z. H.; Zhang, Y. M. et al. Boosting hydrogen transfer during volmer reaction at oxides/metal nanocomposites for efficient alkaline hydrogen evolution. ACS Energy Lett. 2019, 4, 3002–3010.

[58]

Lu, K.; Liu, Y. Z.; Lin, F.; Cordova, I. A.; Gao, S. Y.; Li, B. M.; Peng, B.; Xu, H. P.; Kaelin, J.; Coliz, D. et al. Li x NiO/Ni heterostructure with strong basic lattice oxygen enables electrocatalytic hydrogen evolution with Pt-like activity. J. Am. Chem. Soc. 2020, 142, 12613–12619.

[59]

Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

[60]

Zhang, T.; Yang, K. N.; Wang, C.; Li, S. Y.; Zhang, Q. Q.; Chang, X. J.; Li, J. T.; Li, S. M.; Jia, S. F.; Wang, J. B. et al. Nanometric Ni5P4 clusters nested on NiCo2O4 for efficient hydrogen production via alkaline water electrolysis. Adv. Energy Mater. 2018, 8, 1801690.

[61]

Yang, M. Y.; Zhao, M. X.; Yuan, J.; Luo, J. X.; Zhang, J. J.; Lu, Z. G.; Chen, D. Z.; Fu, X. Z.; Wang, L.; Liu, C. Oxygen vacancies and interface engineering on amorphous/crystalline CrO x -Ni3N heterostructures toward high-durability and kinetically accelerated water splitting. Small 2022, 18, 2106554.

[62]

Yu, H. Z.; Hu, M. Y.; Chen, C.; Hu, C. J.; Li, Q. H.; Hu, F.; Peng, S. J.; Ma, J. Ambient γ-rays-mediated noble-metal deposition on defect-rich manganese oxide for glycerol-assisted h2 evolution at industrial-level current density. Angew. Chem., Int. Ed. 2023, 62, e202314569.

[63]

Zhu, Y. P.; Fan, K.; Hsu, C. S.; Chen, G.; Chen, C. S.; Liu, T. C.; Lin, Z. Z.; She, S. X.; Li, L. Q.; Zhou, H. M. et al. Supported ruthenium single-atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution. Adv. Mater. 2023, 35, 2301133.

[64]

Lin, F.; Dong, Z. H.; Yao, Y. H.; Yang, L.; Fang, F.; Jiao, L. F. Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv. Energy Mater. 2020, 10, 2002176.

[65]

Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610–617.

[66]

Zhang, B.; Zhang, L. S.; Tan, Q. Y.; Wang, J. S.; Liu, J.; Wan, H. Z.; Miao, L.; Jiang, J. J. Simultaneous interfacial chemistry and inner Helmholtz plane regulation for superior alkaline hydrogen evolution. Energy Environ. Sci. 2020, 13, 3007–3013.

[67]

Li, J. C.; Zhang, C.; Zhang, T.; Shen, Z. H.; Zhou, Q. W.; Pu, J.; Ma, H. J.; Wang, T. H.; Zhang, H. G.; Fan, H. M. et al. Multiple-interface relay catalysis: Enhancing alkaline hydrogen evolution through a combination of Volmer promoter and electrical-behavior regulation. Chem. Eng. J. 2020, 397, 125457.

[68]

Jiang, Y.; Wu, X. Q.; Yan, Y. C.; Luo, S.; Li, X.; Huang, J. B.; Zhang, H.; Yang, D. R. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Small 2019, 15, 1805474.

[69]

Fu, Q.; Wang, X. J.; Han, J. C.; Zhong, J.; Zhang, T. R.; Yao, T.; Xu, C. Y.; Gao, T. L.; Xi, S. B.; Liang, C. et al. Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2020, 60, 259–267.

[70]

Wang, J. D.; Xiao, X.; Liu, Y.; Pan, K. M.; Pang, H.; Wei, S. Z. The application of CeO2-based materials in electrocatalysis. J. Mater. Chem. A 2019, 7, 17675–17702.

[71]

Zhang, R.; Ren, X.; Hao, S.; Ge, R. X.; Liu, Z. A.; Asiri, A. M.; Chen, L.; Zhang, Q. J.; Sun, X. P. Selective phosphidation: An effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J. Mater. Chem. A 2018, 6, 1985–1990.

[72]

Sun, H. M.; Tian, C. Y.; Fan, G. L.; Qi, J. N.; Liu, Z. T.; Yan, Z. H.; Cheng, F. Y.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.

[73]

Sun, H. M.; Tian, C. Y.; Li, Y. L.; Wu, J.; Wang, Q. L.; Yan, Z. H.; Li, C. P.; Cheng, F. Y.; Du, M. Coupling NiCo alloy and CeO2 to enhance electrocatalytic hydrogen evolution in alkaline solution. Adv. Sustainable Syst. 2020, 4, 2000122.

[74]

Yang, L.; Liu, R. M.; Jiao, L. F. Electronic redistribution: Construction and modulation of interface engineering on CoP for enhancing overall water splitting. Adv. Funct. Mater. 2020, 30, 1909618.

[75]

Xu, K.; Sun, Y. Q.; Sun, Y. M.; Zhang, Y. Q.; Jia, G. C.; Zhang, Q. H.; Gu, L.; Li, S. Z.; Li, Y.; Fan, H. J. Yin-yang harmony: Metal and nonmetal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution. ACS Energy Lett. 2018, 3, 2750–2756.

[76]

Zhang, L.; Liu, P. F.; Li, Y. H.; Wang, C. W.; Zu, M. Y.; Fu, H. Q.; Yang, X. H.; Yang, H. G. Accelerating neutral hydrogen evolution with tungsten modulated amorphous metal hydroxides. ACS Catal. 2018, 8, 5200–5205.

[77]

Yang, L.; Gou, W. K.; Cheng, C. J.; Tian, Y.; Qu, K. X.; Sun, H. M.; Chen, J.; Sun, J. C.; Li, C. P. Superhydrophilic self-supported Y-doping Ni2P electrode for robust alkaline hydrogen evolution at large current density. Appl. Surf. Sci. 2024, 654, 159505.

[78]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[79]

Shen, L. F.; Lu, B. A.; Qu, X. M.; Ye, J. Y.; Zhang, J. M.; Yin, S. H.; Wu, Q. H.; Wang, R. X.; Shen, S. Y.; Sheng, T. et al. Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media? Nano Energy 2019, 62, 601–609.

[80]

Luc, W.; Jiang, Z.; Chen, J. G.; Jiao, F. Role of surface oxophilicity in copper-catalyzed water dissociation. ACS Catal. 2018, 8, 9327–9333.

[81]

Li, Y. J.; Pei, W.; He, J. T.; Liu, K.; Qi, W. H.; Gao, X. H.; Zhou, S.; Xie, H. P.; Yin, K.; Gao, Y. L. et al. Hybrids of PtRu nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction. ACS Catal. 2019, 9, 10870–10875.

[82]

Zhang, D.; Zhao, H.; Huang, B. L.; Li, B.; Li, H. D.; Han, Y.; Wang, Z. C.; Wu, X. K.; Pan, Y.; Sun, Y. J. et al. Advanced ultrathin RuPdM (M = Ni, Co, Fe) nanosheets electrocatalyst boosts hydrogen evolution. ACS Cent. Sci. 2019, 5, 1991–1997.

[83]

Jia, Z.; Yang, T.; Sun, L. G.; Zhao, Y. L.; Li, W. P.; Luan, J. H.; Lyu, F. C.; Zhang, L. C.; Kruzic, J. J.; Kai, J. J. et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 2020, 32, 2000385.

[84]

Pan, Y. D.; Gao, J. K.; Lv, E. J.; Li, T. T.; Xu, H.; Sun, L.; Nairan, A.; Zhang, Q. C. Integration of alloy segregation and surface Co-O hybridization in carbon-encapsulated CoNiPt alloy catalyst for superior alkaline hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2303833.

[85]

Wei, M.; Sun, Y. Y.; Zhang, J. Y.; Ai, F.; Xi, S. B.; Wang, J. K. High-entropy alloy nanocrystal assembled by nanosheets with d-d electron interaction for hydrogen evolution reaction. Energy Environ. Sci. 2023, 16, 4009–4019.

[86]

Wang, D. G.; Wu, J. X.; Jiao, L. Y.; Xie, L. M. In situ identification of active sites during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 12910–12918.

[87]

Liu, W. H.; Zhang, H. M.; Ma, M. Y.; Cao, D.; Cheng, D. J. Constructing a highly active amorphous WO3/crystalline CoP interface for enhanced hydrogen evolution at different pH values. ACS Appl. Energy Mater. 2022, 5, 10794–10801.

[88]

Xia, W.; Ma, M. Y.; Guo, X. Y.; Cheng, D. J.; Wu, D. F.; Cao, D. Fabricating Ru atom-doped novel FeP4/Fe2PO5 heterogeneous interface for overall water splitting in alkaline environment. ACS Appl. Mater. Interfaces 2023, 15, 44827–44838.

[89]

Zhang, C. H.; Guo, Z. W.; Tian, Y.; Yu, C. M.; Liu, K. S.; Jiang, Lei. Engineering electrode wettability to enhance mass transfer in hydrogen evolution reaction. Nano Res. Energy 2023, 2, e9120063.

Nano Research Energy
Article number: e9120121
Cite this article:
Gou W, Sun H, Cheng F. Dual active sites engineering of electrocatalysts for alkaline hydrogen evolution. Nano Research Energy, 2024, 3: e9120121. https://doi.org/10.26599/NRE.2024.9120121

1575

Views

481

Downloads

3

Crossref

2

Scopus

Altmetrics

Received: 18 February 2024
Revised: 25 March 2024
Accepted: 26 March 2024
Published: 18 April 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return