AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Robust ring insoluble naphthoquinone derivative cathode with high loading and long cycle life for aqueous zinc organic batteries

Jiali Wang1Xinyu Gao1Yongwen Wang1Ruonan Pan1Zhen Liu1Xin Liu1Haijiao Xie2Feng Yu1Gang Wang1( )Tiantian Gu1( )
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
Hangzhou Yanqu Information Technology Co., Ltd. Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen’er West Road, Xihu District, Hangzhou 310003, China
Show Author Information

Graphical Abstract

Abstract

Organic materials for aqueous zinc ion batteries have been attracted the attention of researchers because of their high safety, environmental friendliness, and structural designability. However, the limited specific capacity, unsatisfactory cycling durability, and unclear charge storage mechanism limit their development and applications. Herein, NTCDA-2,3-DNQ, an organic compound with a benzimidazole ring structure, was designed through the number and distribution of active sites as well as the adjustment of molecular weight, and applied as the cathode for aqueous zinc-ion batteries. NTNQ exhibits high specific capacity of 290.5 mAh·g–1 at 0.05 A·g–1, excellent rate performance of 133.3 mAh·g–1 at 15 A·g–1, and relatively stable cycle life with 81.7% capacity retention over 10,000 superlong cycles at 10 A·g–1. Furthermore, the synergistic effect of neighboring active sites and multi-electron Zn2+ storage reactions are further explored by density functional theory (DFT) calculations, and the results show that NTNQ could stores 4Zn2+ while transferring 8e in the N-Zn-O pathway during the storage of Zn2+. Interestingly, NTNQ still exhibits high specific capacity and favorable cycling stability at multiple ultra-high loadings. This work provides important chances including the design concepts of the organic molecules and the investigation of the Zn2+ storage mechanism for high performance aqueous zinc ion batteries.

Electronic Supplementary Material

Download File(s)
0124_ESM.pdf (1 MB)

References

[1]

Ren, G. R.; Liu, J. F.; Wan, J.; Guo, Y. F.; Yu, D. R. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. Appl. Energy 2017, 204, 47–65.

[2]

Farghali, M.; Osman, A. I.; Chen, Z. H.; Abdelhaleem, A.; Ihara, I.; Mohamed, I. M. A.; Yap, P. S.; Rooney, D. W. Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: A review. Environ. Chem. Lett. 2023, 21, 1381–1418.

[3]

Appiah, M.; Li, M. X.; Naeem, M. A.; Karim, S. Greening the globe: Uncovering the impact of environmental policy, renewable energy, and innovation on ecological footprint. Technol. Forecast. Soc. Change 2023, 192, 122561.

[4]

Yang, C. Y.; Xia, J. L.; Cui, C. Y.; Pollard, T. P.; Vatamanu, J.; Faraone, A.; Dura, J. A.; Tyagi, M.; Kattan, A.; Thimsen, E. et al. All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 2023, 6, 325–335.

[5]

Li, Z. H.; Tan, J.; Wang, Y.; Gao, C. Y.; Wang, Y. G.; Ye, M. X.; Shen, J. F. Building better aqueous Zn-organic batteries. Energy Environ. Sci. 2023, 16, 2398–2431.

[6]

Zhao, J. X.; Lu, H. Y.; Peng, J. H.; Li, X. F.; Zhang, J. J.; Xu, B. G. Establishing aqueous zinc-ion batteries for sustainable energy storage. Energy Storage Mater. 2023, 60, 102846.

[7]

Zampardi, G.; La Mantia, F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 2022, 13, 687.

[8]

Deng, X. M.; Sarpong, J. K.; Zhang, G. B.; Hao, J.; Zhao, X.; Li, L. Y.; Li, H. F.; Han, C. P.; Li, B. H. Proton storage chemistry in aqueous zinc-organic batteries: A review. InfoMat 2023, 5, e12382.

[9]

Li, G. J.; Sun, L.; Zhang, S. L.; Zhang, C. F.; Jin, H. Y.; Davey, K.; Liang, G. M.; Liu, S. L.; Mao, J. F.; Guo, Z. P. Developing cathode materials for aqueous zinc ion batteries: Challenges and practical prospects. Adv. Funct. Mater. 2024, 34, 2301291.

[10]

Li, X. Y.; Wang, L.; Fu, Y. H.; Dang, H.; Wang, D. H.; Ran, F. Optimization strategies toward advanced aqueous zinc-ion batteries: From facing key issues to viable solutions. Nano Energy 2023, 116, 108858.

[11]

Miroshnikov, M.; Divya, K. P.; Babu, G.; Meiyazhagan, A.; Reddy Arava, L. M.; Ajayan, P. M.; John, G. Power from nature: Designing green battery materials from electroactive quinone derivatives and organic polymers. J. Mater. Chem. A 2016, 4, 12370–12386.

[12]

Gerken, J. B.; Anson, C. W.; Preger, Y.; Symons, P. G.; Genders, J. D.; Qiu, Y.; Li, W. Z.; Root, T. W.; Stahl, S. S. Comparison of quinone-based catholytes for aqueous redox flow batteries and demonstration of long-term stability with tetrasubstituted Quinones. Adv. Energy Mater. 2020, 10, 2000340.

[13]

Yang, H. Q.; Lee, J.; Cheong, J. Y.; Wang, Y. F.; Duan, G. G.; Hou, H. Q.; Jiang, S. H.; Kim, I. D. Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: Fundamentals, recent advances, and challenges. Energy Environ. Sci. 2021, 14, 4228–4267.

[14]

Xiao, J.; Huang, Y.; Ma, Y. W.; Li, C. W.; Fu, L.; Zeng, W. P.; Wang, X. C.; Li, X.; Wang, M. S.; Guo, B. S. et al. Organic active materials in rechargeable batteries: Recent advances and prospects. Energy Storage Mater. 2023, 63, 103046.

[15]

Zeng, Y. X.; Luan, D. Y.; Lou, X. W. Recent advances in electrode engineering strategies for aqueous Zn-based batteries. Chem 2023, 9, 1118–1146.

[16]

Sun, Q. Q.; Sun, T.; Du, J. Y.; Li, K.; Xie, H. M.; Huang, G.; Zhang, X. B. A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 2023, 35, 2301088.

[17]

Barbosa, J. C.; Fidalgo-Marijuan, A.; Dias, J. C.; Gonçalves, R.; Salado, M.; Costa, C. M.; Lanceros-Méndez, S. Molecular design of functional polymers for organic radical batteries. Energy Storage Mater. 2023, 60, 102841.

[18]

Wang, J. L.; Lv, H.; Huang, L. L.; Li, J. H.; Xie, H. J.; Wang, G.; Gu, T. T. Anhydride-based compound with tunable redox properties as advanced organic cathodes for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2023, 15, 49447–49457.

[19]

Wang, J. L.; Huang, L. L.; Li, J. H.; Lv, H.; Chen, L.; Xie, H. J.; Wang, G.; Gu, T. T. Design and synthesis of п-conjugated aromatic heterocyclic materials with dual active sites and ultra-high rate performance for aqueous zinc-organic batteries. J. Colloid Interface Sci. 2024, 653, 1103–1111.

[20]

Zhang, Y.; Huang, Z.; Ruan, B.; Zhang, X. K.; Jiang, T.; Ma, N.; Tsai, F. C. Design and synthesis of polyimide covalent organic frameworks. Macromol. Rapid Commun. 2020, 41, 2000402.

[21]

Yang, J.; Hua, H. M.; Yang, H. Y.; Lai, P. B.; Zhang, M. H.; Lv, Z. H.; Wen, Z. P.; Li, C. C.; Zhao, J. B.; Yang, Y. A high utilization and environmentally sustainable all-organic aqueous zinc-ion battery enabled by a molecular architecture design. Adv. Energy Mater. 2023, 13, 2204005.

[22]

Li, W. D.; Xu, H. Y.; Zhang, H. Y.; Wei, F. C.; Huang, L. Y.; Ke, S. Z.; Fu, J. W.; Jing, C. B.; Cheng, J. G.; Liu, S. H. Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 2023, 14, 5235.

[23]

Li, L.; Yin, Y. J.; Hei, J. P.; Wan, X. J.; Li, M. L.; Cui, Y. Molecular engineering of aromatic imides for organic secondary batteries. Small 2021, 17, 2005752.

[24]

Zhang, S. Q.; Zhao, W. T.; Li, H.; Xu, Q. Cross-conjugated polycatechol organic cathode for aqueous zinc-ion storage. ChemSusChem 2020, 13, 188–195.

[25]

Chen, Y.; Li, J. Y.; Zhu, Q.; Fan, K.; Cao, Y. Q.; Zhang, G. Q.; Zhang, C. Y.; Gao, Y. B.; Zou, J. C.; Zhai, T. Y. et al. Two-dimensional organic supramolecule via hydrogen bonding and π-π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries. Angew. Chem., Int. Ed. 2022, 61, e202116289.

[26]

Yan, L.; Zhang, Y.; Ni, Z. G.; Zhang, Y.; Xu, J.; Kong, T. Y.; Huang, J. H.; Li, W.; Ma, J.; Wang, Y. G. Chemically self-charging aqueous zinc-organic battery. J. Am. Chem. Soc. 2021, 143, 15369–15377.

[27]

Zhao, Y.; Huang, Y. X.; Wu, F.; Chen, R. J.; Li, L. High-performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers. Adv. Mater. 2021, 33, 2106469.

[28]

Sun, T. J.; Zhang, W. J.; Zha, Z. T.; Cheng, M.; Li, D. T.; Tao, Z. L. Designing a solubility-limited small organic molecule for aqueous zinc-organic batteries. Energy Storage Mater. 2023, 59, 102778.

[29]

Sun, T. J.; Yi, Z. H.; Zhang, W. J.; Nian, Q. S.; Fan, H. J.; Tao, Z. L. Dynamic balance of partial charge for small organic compound in aqueous zinc-organic battery. Adv. Funct. Mater. 2023, 33, 2306675.

[30]

He, J.; Zhao, Y.; Yan, C.; Jing, R. W.; Wang, R. Y.; Shi, M. J. Highly redox-active polymer with extensive electron delocalization and optimized molecular orbitals for extraordinary proton storage. Chem. Eng. J. 2023, 470, 144204.

[31]

Zhao, Y.; He, J.; Hu, L. T.; Yang, J.; Yan, C.; Shi, M. J. Carboxyl-substituted organic molecule assembled with MXene nanosheets for boosting aqueous Na+ storage. Small 2023, 19, 2304182.

[32]

Su, Y. Q.; Shang, J.; Liu, X. C.; Li, J.; Pan, Q. G.; Tang, Y. B. Constructing π-π superposition effect of tetralithium naphthalenetetracarboxylate with electron delocalization for robust dual-ion batteries. Angew. Chem., Int. Ed. 2024, e202403775.

[33]

Noh, H. J.; Im, Y. K.; Yu, S. Y.; Seo, J. M.; Mahmood, J.; Yildirim, T.; Baek, J. B. Vertical two-dimensional layered fused aromatic ladder structure. Nat. Commun. 2020, 11, 2021.

[34]

Ding, Y. Y.; Chen, D.; Ren, X.; Cao, Y. L.; Xu, F. Organic-conjugated polyanthraquinonylimide cathodes for rechargeable magnesium batteries. J. Mater. Chem. A 2022, 10, 14111–14120.

[35]

Lin, Z. R.; Shi, H. Y.; Lin, L.; Yang, X. P.; Wu, W. L.; Sun, X. Q. A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 2021, 12, 4424.

[36]

Unsalan, O.; Sert, Y.; Altunayar-Unsalan, C.; Erten-Ela, S. Heterojunction solar cell based on donor-acceptor pi-conjugated naphthalene bisbenzimidazole, perylene bisbenzimidazole, and naphthalene imidazole: A spectroscopic, microscopic and DFT assessment. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2023, 294, 122516.

[37]

Zhu, Y. F.; Jin, W.; Gao, H. G.; Chen, Y. L.; Wu, T. R.; Wu, D. Y.; Huang, Y. C.; Guo, D. F.; Chen, Z. D.; Huang, Q. H. et al. C3-symmetric trimeric imidazole naphthoquinone derivative with dual redox-active sites for high-performance cathodic lithium storage. Chem. Eng. J. 2023, 462, 142229.

[38]

Zhao, Y.; Wu, M. M.; Chen, H. B.; Zhu, J.; Liu, J.; Ye, Z. T.; Zhang, Y.; Zhang, H. T.; Ma, Y. F.; Li, C. X. et al. Balance cathode-active and anode-active groups in one conjugated polymer towards high-performance all-organic lithium-ion batteries. Nano Energy 2021, 86, 106055.

[39]

Shi, T. T.; Li, G. F.; Han, Y.; Gao, Y. J.; Wang, F.; Hu, Z. J.; Cai, T. T.; Chu, J.; Song, Z. P. Oxidized indanthrone as a cost-effective and high-performance organic cathode material for rechargeable lithium batteries. Energy Storage Mater. 2022, 50, 265–273.

[40]

Kapaev, R. R.; Shestakov, A. F.; Vasil’ev, S.; Stevenson, K. J. Conjugated ladder-type polymer with hexaazatriphenylene units as a cathode material for lithium, sodium, and potassium batteries. ACS Appl. Energy Mater. 2021, 4, 10423–10427.

[41]

Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I. Y.; Jung, S. M.; Choi, H. J.; Seo, J. M.; Bae, S. Y.; Sohn, S. D. et al. Nitrogenated holey two-dimensional structures. Nat. Commun. 2015, 6, 6486.

[42]

Wang, Q.; Liu, Y.; Wang, C.; Xu, X. Y.; Zhao, W.; Li, Y. Y.; Dong, H. L. Vat Orange 7 as an organic electrode with ultrafast hydronium-ion storage and super-long life for rechargeable aqueous zinc batteries. Chem. Eng. J. 2023, 451, 138776.

[43]

Taublaender, M. J.; Mezzavilla, S.; Thiele, S.; Glöcklhofer, F.; Unterlass, M. M. Hydrothermal generation of conjugated polymers using the example of pyrrone polymers and polybenzimidazoles. Angew. Chem., Int. Ed. 2020, 59, 15050–15060.

[44]

Xiong, J. K.; Yan, X. R.; Yu, H. P.; Wu, C. G.; Zhao, G. Q.; Zhang, J. Z.; Dai, Y. J.; Wang, X. Y.; Gao, J. F.; Pu, X. et al. Solvent-free synthesis of a naphthoquinone-based bipolar organic cathode towards practical durable lithium organic batteries. J. Mater. Chem. A 2023, 11, 8048–8056.

[45]

Wang, J. H.; Liu, Z. L.; Wang, H. G.; Cui, F. C.; Zhu, G. S. Integrated pyrazine-based porous aromatic frameworks/carbon nanotube composite as cathode materials for aqueous zinc ion batteries. Chem. Eng. J. 2022, 450, 138051.

[46]

Ba, Z. H.; Wang, Z. X.; Zhou, Y.; Li, H. B.; Dong, J.; Zhang, Q. H.; Zhao, X. Electrochemical properties of a multicarbonyl polyimide superstructure as a hierarchically porous organic anode for lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 13161–13171.

[47]

Zhang, R. Y.; Xu, H.; Luo, D. R.; Chi, J. X.; Fan, Z. J.; Dou, H.; Zhang, X. G. Noncovalent interactions engineering construct the fast-kinetics organic cathode for room/low-temperature aqueous zinc-ion battery. Chem. Eng. J. 2023, 458, 141336.

[48]

Li, L.; Su, Y. H.; Ji, Y. L.; Wang, P. A long-lived water-soluble phenazine radical cation. J. Am. Chem. Soc. 2023, 145, 5778–5785.

[49]

Liang, J. D.; Tang, M. Y.; Cheng, L. W.; Zhu, Q. N.; Ji, R. N.; Liu, X.; Zhang, Q.; Wang, H.; Liu, Z. T. 2, 3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode. J. Colloid Interface Sci. 2022, 607, 1262–1268.

[50]

Li, L. H.; Yang, H. H.; Wang, X.; Ma, Y. H.; Ou, W. Z.; Peng, H.; Ma, G. F. An anthraquinone-based covalent organic framework for highly reversible aqueous zinc-ion battery cathodes. J. Mater. Chem. A 2023, 11, 26221–26229.

[51]

Shi, Y. J.; Wang, P. C.; Gao, H. G.; Jin, W.; Chen, Y. L.; Huang, Y. C.; Wu, T. R.; Wu, D. Y.; Xu, J.; Cao, J. Y. π-Conjugated N-heterocyclic compound with redox-active quinone and pyrazine moieties as a high-capacity organic cathode for aqueous zinc-ion batteries. Chem. Eng. J. 2023, 461, 141850.

[52]

Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601792.

[53]

Chen, X. J.; Su, H. Q.; Yang, B. Z.; Yin, G.; Liu, Q. Realizing high-rate aqueous zinc-ion batteries using organic cathode materials containing electron-withdrawing groups. Sustain. Energy Fuels 2022, 6, 2523–2531.

[54]

Huang, X.; Qiu, X.; Wang, W.; Li, J. J.; Li, Z.; Yu, X. M.; Ma, J.; Wang, Y. G. Activating organic electrode via trace dissolved organic molecules. J. Am. Chem. Soc. 2023, 145, 25604–25613.

[55]

Luo, Z. Q.; Liu, L. J.; Zhao, Q.; Li, F. J.; Chen, J. An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew. Chem., Int. Ed. 2017, 56, 12561–12565.

[56]

Gao, Y. J.; Li, G. F.; Wang, F.; Chu, J.; Yu, P.; Wang, B. S.; Zhan, H.; Song, Z. P. A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 2021, 40, 31–40.

[57]

Wang, X. L.; Zhou, J.; Li, Z. P.; Tang, W. H. N-Heteroaromatic fused-ring cyanides extended as redox polymers for high rate capability aqueous zinc-ion battery. J. Mater. Chem. A 2023, 11, 2412–2418.

[58]

Yao, L. Y.; Ma, C.; Sun, L. B.; Zhang, D. L.; Chen, Y. Z.; Jin, E. Q.; Song, X. W.; Liang, Z. Q.; Wang, K. X. Highly crystalline polyimide covalent organic framework as dual-active-center cathode for high-performance lithium-ion batteries. J. Am. Chem. Soc. 2022, 144, 23534–23542.

[59]

He, T. Q.; Kang, X. Y.; Wang, F. J.; Zhang, J. L.; Zhang, T. Y.; Ran, F. Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries. Mater. Sci. Eng.: R: Rep. 2023, 154, 100737.

[60]

Li, J. H.; Huang, L. L.; Lv, H.; Wang, J. L.; Wang, G.; Chen, L.; Liu, Y. Y.; Guo, W.; Yu, F.; Gu, T. T. Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 38844–38853.

[61]

Song, Z. Y.; Miao, L.; Ruhlmann, L.; Lv, Y. K.; Li, L. C.; Gan, L. H.; Liu, M. X. Proton-conductive supramolecular hydrogen-bonded organic superstructures for high-performance zinc-organic batteries. Angew. Chem., Int. Ed. 2023, 62, e202219136.

[62]

Wang, W. X.; Kale, V. S.; Cao, Z.; Kandambeth, S.; Zhang, W. L.; Ming, J.; Parvatkar, P. T.; Abou-Hamad, E.; Shekhah, O.; Cavallo, L. et al. Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery. ACS Energy Lett. 2020, 5, 2256–2264.

[63]

Li, S. L.; Shang, J.; Li, M. L.; Xu, M. W.; Zeng, F. B.; Yin, H.; Tang, Y. B.; Han, C. P.; Cheng, H. M. Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. 2023, 35, 2207115.

[64]

Liu, Y. Y.; Li, Z. L.; Li, C. L.; Wei, Y. F.; Yan, S.; Ji, Z. Y.; Zou, S. X.; Li, H. B.; Liu, Y. Z.; Chen, C. et al. Imidazole-linked covalent organic polymers with abundant oxygen and nitrogen active centers for advanced aqueous zinc-organic batteries. Chem. Eng. J. 2024, 488, 150778.

[65]

Song, C. L.; Wang, Q.; Wen, R. H.; Tang, Q. B.; Luo, Z. Q.; Yuan, Z. H. A long-life and excellent rate-capability aqueous Zn-benzoquinone battery enabled by iodine-catalyzed cathode. Small Methods 2023, 2300809.

[66]

Song, Z. H.; Zhao, Y.; Zhou, A. B.; Wang, H. R.; Jin, X. Y.; Huang, Y. X.; Li, L.; Wu, F.; Chen, R. J. Organic intercalation induced kinetic enhancement of vanadium oxide cathodes for ultrahigh-loading aqueous zinc-ion batteries. Small 2024, 20, 2305030.

[67]

Xu, Z. X.; Li, M.; Sun, W. Y.; Tang, T.; Lu, J.; Wang, X. L. An ultrafast, durable, and high-loading polymer anode for aqueous zinc-ion batteries and supercapacitors. Adv. Mater. 2022, 34, 2200077.

Nano Research Energy
Cite this article:
Wang J, Gao X, Wang Y, et al. Robust ring insoluble naphthoquinone derivative cathode with high loading and long cycle life for aqueous zinc organic batteries. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120124

684

Views

134

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 22 March 2024
Revised: 25 April 2024
Accepted: 02 May 2024
Published: 24 May 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return