Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Low electrolyte usage is a key to attaining high-energy-density lithium–sulfur (Li–S) batteries. However, this is still a tremendous challenge for traditional ether-based electrolytes that follow a dissolution–precipitation mechanism. Highly solvating electrolytes, which can facilitate polysulfide dissolution and alter reaction pathway, are considered a promising strategy. Nonetheless, mechanistic understanding and kinetic evaluation remain insufficient while the principle of Li2S nucleation and dissociation has not been elucidated. Herein, we unveil the Li-ion solvation and polysulfide speciation in the solvents with different denticity and donicity. The origin of S3•– radical-directed path and three-dimensional Li2S precipitation in high-donicity electrolytes has been uncovered. It is revealed that ammonium ions enable the facile dissolution and dissociation of Li2S via Lewis acid-base interaction and H···S2– binding. Consequently, Li–S batteries with a low electrolyte and sulfur (E/S) ratio of 5 μL·mgs–1 achieve a high capacity of 1092 mAh·g–1. Even at a harsh E/S ratio of 3 μL·mgs–1 and a high sulfur loading of 4 mg·cm–2, they still sustain a stable operation over 30 cycles. Our work sheds light on the underlying reaction mechanism and rationalizes the design of highly solvating electrolytes, which in turn opens a new avenue for achieving pragmatic lean-electrolyte Li–S batteries.
Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries. Mater. Today 2021, 45, 62–76.
Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.
Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.
Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705590.
Bieker, G.; Küpers, V.; Kolek, M.; Winter, M. Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun. Mater. 2021, 2, 37.
Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes. Nano Res. Energy 2022, 1, e9120012.
Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.
Shi, Z. X.; Ding, Y. F.; Zhang, Q.; Sun, J. Y. Electrocatalyst modulation toward bidirectional sulfur redox in Li-S batteries: From strategic probing to mechanistic understanding. Adv. Energy Mater. 2022, 12, 2201056.
Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.
Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2S n and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.
Zhao, M.; Li, B. Q.; Chen, X.; Xie, J.; Yuan, H.; Huang, J. Q. Redox comediation with organopolysulfides in working lithium-sulfur batteries. Chem 2020, 6, 3297–3311.
Zhao, M.; Chen, X.; Li, X. Y.; Li, B. Q.; Huang, J. Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2007298.
Wahyudi, W.; Ladelta, V.; Tsetseris, L.; Alsabban, M. M.; Guo, X. R.; Yengel, E.; Faber, H.; Adilbekova, B.; Seitkhan, A.; Emwas, A. H. et al. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv. Funct. Mater. 2021, 31, 2101593.
Liu, G.; Sun, Q. J.; Li, Q.; Zhang, J. L.; Ming, J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges. Energy Fuels 2021, 35, 10405–10427.
Ye, H. L.; Li, M.; Liu, T. C.; Li, Y. G.; Lu, J. Activating Li2S as the lithium-containing cathode in lithium-sulfur batteries. ACS Energy Lett. 2020, 5, 2234–2245.
Shi, Z. X.; Ci, H.; Yang, X. Z.; Liu, Z. F.; Sun, J. Y. Direct-chemical vapor deposition-enabled graphene for emerging energy storage: Versatility, essentiality, and possibility. ACS Nano 2022, 16, 11646–11675.
Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.
Xue, W. J.; Shi, Z.; Suo, L. M.; Wang, C.; Wang, Z. Q.; Wang, H. Z.; So, K. P.; Maurano, A.; Yu, D. W.; Chen, Y. M. et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 2019, 4, 374–382.
Shen, Z. H.; Jin, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nat. Catal. 2022, 5, 555–563.
Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Fan, Z. D.; Jin, J.; Wang, M. L.; Sun, J. Y. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries. Adv. Funct. Mater. 2021, 31, 2006798.
Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.
Cai, J. S.; Jin, J.; Fan, Z. D.; Li, C.; Shi, Z. X.; Sun, J. Y.; Liu, Z. F. 3D printing of a V8C7-VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 2020, 32, 2005967.
Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.
Jiang, Z. P.; Zeng, Z. Q.; Hu, W.; Han, Z. L.; Cheng, S. J.; Xie, J. Diluted high concentration electrolyte with dual effects for practical lithium-sulfur batteries. Energy Storage Mater. 2021, 36, 333–340.
Zheng, J.; Ji, G. B.; Fan, X. L.; Chen, J.; Li, Q.; Wang, H. Y.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. S. High-fluorinated electrolytes for Li-S batteries. Adv. Energy Mater. 2019, 9, 1803774.
Shi, Z. X.; Tian, Z. N.; Guo, D.; Wang, Y. Z.; Bayhan, Z.; Alzahrani, A. S.; Alshareef, H. N. Kinetically favorable Li-S battery electrolytes. ACS Energy Lett. 2023, 8, 3054–3080.
Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F. Radical or not radical: Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 2015, 5, 1401801.
Baek, M.; Shin, H.; Char, K.; Choi, J. W. New high donor electrolyte for lithium-sulfur batteries. Adv. Mater. 2020, 32, 2005022.
Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.
Wu, F. X.; Chu, F. L.; Ferrero, G. A.; Sevilla, M.; Fuertes, A. B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte. Nano Lett. 2020, 20, 5391–5399.
Ye, G.; Zhao, M.; Hou, L. P.; Chen, W. J.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. Evaluation on a 400 Wh·kg–1 lithium-sulfur pouch cell. J. Energy Chem. 2022, 66, 24–29.
Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.
Ye, H. L.; Sun, J. G.; Zhao, Y.; Lee, J. Y. An integrated approach to improve the performance of lean-electrolyte lithium-sulfur batteries. J. Energy Chem. 2022, 67, 585–592.
Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J. W. Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2001456.
Zhang, J. H.; Fu, Q. S.; Li, P.; Linghu, R. B.; Fan, X. Z.; Lin, H. B.; Bian, J. C.; Han, S. B.; Sun, G. Z.; Kong, L. Lithium polysulfide solvation and speciation in the aprotic lithium-sulfur batteries. Particuology 2024, 89, 238–245.
Cheng, H. R.; Sun, Q. J.; Li, L. L.; Zou, Y. G.; Wang, Y. Q.; Cai, T.; Zhao, F.; Liu, G.; Ma, Z.; Wahyudi, W. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 2022, 7, 490–513.
Kim, H.; Hwang, J. Y.; Ham, Y. G.; Choi, H. N.; Alfaruqi, M. H.; Kim, J.; Yoon, C. S.; Sun, Y. K. Turning on lithium-sulfur full batteries at -10 °C. ACS Nano 2023, 17, 14032–14042.
Liang, P.; Hu, H. L.; Dong, Y.; Wang, Z. D.; Liu, K. M.; Ding, G. Y.; Cheng, F. Y. Competitive coordination of ternary anions enabling fast Li-ion desolvation for low-temperature lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2309858.
Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.
Song, G.; Yi, Z. L.; Su, F. Y.; Xie, L. J.; Wang, Z. B.; Wei, X. X.; Xu, G. N.; Chen, C. M. Boosting the low-temperature performance for Li-ion batteries in LiPF6-based local high-concentration electrolyte. ACS Energy Lett. 2023, 8, 1336–1343.
Lu, Z.; Liu, D.; Dai, K.; Liu, K. L.; Jing, C. Y.; He, W. T.; Wang, W. R.; Zhang, C. X.; Wei, W. F. Tailoring solvation chemistry in carbonate electrolytes for all-climate, high-voltage lithium-rich batteries. Energy Storage Mater. 2023, 57, 316–325.
Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.
Jiang, C.; Jia, Q. Q.; Tang, M.; Fan, K.; Chen, Y.; Sun, M. X.; Xu, S. F.; Wu, Y. C.; Zhang, C. Y.; Ma, J. et al. Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium-metal anodes. Angew. Chem., Int. Ed. 2021, 60, 10871–10879.
Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.
Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Yang, X. Z.; Wei, C. H.; Wang, M. L.; Ding, Y. F.; Sun, J. Y. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li-S batteries. Adv. Mater. 2021, 33, 2103050.
Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.
Kong, L.; Chen, J. X.; Peng, H. J.; Huang, J. Q.; Zhu, W. C.; Jin, Q.; Li, B. Q.; Zhang, X. T.; Zhang, Q. Current-density dependence of Li2S/Li2S2 growth in lithium-sulfur batteries. Energy Environ. Sci. 2019, 12, 2976–2982.
Bewick, A.; Fleischmann, M.; Thirsk, H. R. Kinetics of the electrocrystallization of thin films of calomel. Trans. Faraday Soc. 1962, 58, 2200–2216.
Scharifker, B.; Hills, G. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 1983, 28, 879–889.
Lu, Y.; Qin, J. L.; Shen, T.; Yu, Y. F.; Chen, K.; Hu, Y. Z.; Liang, J. N.; Gong, M. X.; Zhang, J. J.; Wang, D. L. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv. Energy Mater. 2021, 11, 2101780.
Wang, Z. J.; Wang, Y. Y.; Li, B. H.; Bouwer, J. C.; Davey, K.; Lu, J.; Guo, Z. P. Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202206682.
Zhang, G.; Peng, H. J.; Zhao, C. Z.; Chen, X.; Zhao, L. D.; Li, P.; Huang, J. Q.; Zhang, Q. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16732–16736.
Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J. C.; Patoux, S.; Alloin, F. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal. Chem. 2012, 84, 3973–3980.
Wahyudi, W.; Guo, X. R.; Ladelta, V.; Tsetseris, L.; Nugraha, M. I.; Lin, Y. B.; Tung, V.; Hadjichristidis, N.; Li, Q.; Xu, K. et al. Hitherto unknown solvent and anion pairs in solvation structures reveal new insights into high-performance lithium-ion batteries. Adv. Sci. 2022, 9, 2202405.
See, K. A.; Leskes, M.; Griffin, J. M.; Britto, S.; Matthews, P. D.; Emly, A.; van der Ven, A.; Wright, D. S.; Morris, A. J.; Grey, C. P. et al. Ab initio structure search and in situ 7Li NMR studies of discharge products in the Li-S battery system. J. Am. Chem. Soc. 2014, 136, 16368–16377.
Zhang, B. H.; Wu, J. F.; Gu, J. K.; Li, S.; Yan, T. Y.; Gao, X. P. The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium-sulfur batteries. ACS Energy Lett. 2021, 6, 537–546.
Ye, W. C.; Shen, C. M.; Tian, J. F.; Wang, C. M.; Bao, L. H.; Gao, H. J. Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem. Commun. 2008, 10, 625–629.
Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy. Adv. Sci. 2017, 4, 1600168.
Pan, H. L.; Han, K. S.; Engelhard, M. H.; Cao, R. G.; Chen, J. Z.; Zhang, J. G.; Mueller, K. T.; Shao, Y. Y.; Liu, J. Addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 2018, 28, 1707234.
Zheng, X. Y.; Cao, Z.; Luo, W.; Zhao, T.; Han, Y.; Yang, H.; Liu, X. Y.; Zhou, Y.; Wen, J. Y.; Shen, Y. et al. Liberating the electrolyte via in situ conversion of an amide, sulfonate-containing monomer precursor for high-temperature graphite/NCM batteries. Adv. Funct. Mater. 2023, 33, 2301550.
Fan, Q. N.; Zhang, S. L.; Jiang, J. C.; Lie, W.; Pang, W. K.; Gu, Q. F.; Yang, W. S.; Liu, H. K.; Wang, J. Z.; Guo, Z. P. A green and effective organocatalyst for faster oxidation of Li2S in electrochemical processes. Adv. Funct. Mater. 2023, 33, 2212796.
Gupta, A.; Bhargav, A.; Manthiram, A. Highly solvating electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1803096.
Elabd, A.; Kim, J.; Sethio, D.; Kang, S.; Kang, T.; Choi, J. W.; Coskun, A. Dual functional high donor electrolytes for lithium-sulfur batteries under lithium nitrate free and lean electrolyte conditions. ACS Energy Lett. 2022, 7, 2459–2468.
Cheng, Q.; Xu, W. H.; Qin, S. Y.; Das, S.; Jin, T. W.; Li, A. J.; Li, A. C.; Qie, B.; Yao, P. C.; Zhai, H. W. et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 5557–5561.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.