AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

A tailored highly solvating electrolyte toward ultra lean-electrolyte Li–S batteries

Zixiong Shi1Simil Thomas2Zhengnan Tian1Dong Guo1Zhiming Zhao1Yizhou Wang1Shuo Li1Nimer Wehbe3Abdul-Hamid Emwas3Osman M. Bakr1Omar F. Mohammed2Husam N. Alshareef1( )
Materials Science and Engineering, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Show Author Information

Graphical Abstract

Abstract

Low electrolyte usage is a key to attaining high-energy-density lithium–sulfur (Li–S) batteries. However, this is still a tremendous challenge for traditional ether-based electrolytes that follow a dissolution–precipitation mechanism. Highly solvating electrolytes, which can facilitate polysulfide dissolution and alter reaction pathway, are considered a promising strategy. Nonetheless, mechanistic understanding and kinetic evaluation remain insufficient while the principle of Li2S nucleation and dissociation has not been elucidated. Herein, we unveil the Li-ion solvation and polysulfide speciation in the solvents with different denticity and donicity. The origin of S3•– radical-directed path and three-dimensional Li2S precipitation in high-donicity electrolytes has been uncovered. It is revealed that ammonium ions enable the facile dissolution and dissociation of Li2S via Lewis acid-base interaction and H···S2– binding. Consequently, Li–S batteries with a low electrolyte and sulfur (E/S) ratio of 5 μL·mgs–1 achieve a high capacity of 1092 mAh·g–1. Even at a harsh E/S ratio of 3 μL·mgs–1 and a high sulfur loading of 4 mg·cm–2, they still sustain a stable operation over 30 cycles. Our work sheds light on the underlying reaction mechanism and rationalizes the design of highly solvating electrolytes, which in turn opens a new avenue for achieving pragmatic lean-electrolyte Li–S batteries.

Electronic Supplementary Material

Download File(s)
0126_ESM.pdf (1.7 MB)

References

[1]

Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries. Mater. Today 2021, 45, 62–76.

[2]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

[3]

Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

[4]

Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705590.

[5]

Bieker, G.; Küpers, V.; Kolek, M.; Winter, M. Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun. Mater. 2021, 2, 37.

[6]

Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes. Nano Res. Energy 2022, 1, e9120012.

[7]

Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.

[8]

Shi, Z. X.; Ding, Y. F.; Zhang, Q.; Sun, J. Y. Electrocatalyst modulation toward bidirectional sulfur redox in Li-S batteries: From strategic probing to mechanistic understanding. Adv. Energy Mater. 2022, 12, 2201056.

[9]

Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.

[10]

Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2S n and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.

[11]

Zhao, M.; Li, B. Q.; Chen, X.; Xie, J.; Yuan, H.; Huang, J. Q. Redox comediation with organopolysulfides in working lithium-sulfur batteries. Chem 2020, 6, 3297–3311.

[12]

Zhao, M.; Chen, X.; Li, X. Y.; Li, B. Q.; Huang, J. Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2007298.

[13]

Wahyudi, W.; Ladelta, V.; Tsetseris, L.; Alsabban, M. M.; Guo, X. R.; Yengel, E.; Faber, H.; Adilbekova, B.; Seitkhan, A.; Emwas, A. H. et al. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv. Funct. Mater. 2021, 31, 2101593.

[14]

Liu, G.; Sun, Q. J.; Li, Q.; Zhang, J. L.; Ming, J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges. Energy Fuels 2021, 35, 10405–10427.

[15]

Ye, H. L.; Li, M.; Liu, T. C.; Li, Y. G.; Lu, J. Activating Li2S as the lithium-containing cathode in lithium-sulfur batteries. ACS Energy Lett. 2020, 5, 2234–2245.

[16]

Shi, Z. X.; Ci, H.; Yang, X. Z.; Liu, Z. F.; Sun, J. Y. Direct-chemical vapor deposition-enabled graphene for emerging energy storage: Versatility, essentiality, and possibility. ACS Nano 2022, 16, 11646–11675.

[17]

Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.

[18]

Xue, W. J.; Shi, Z.; Suo, L. M.; Wang, C.; Wang, Z. Q.; Wang, H. Z.; So, K. P.; Maurano, A.; Yu, D. W.; Chen, Y. M. et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 2019, 4, 374–382.

[19]

Shen, Z. H.; Jin, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nat. Catal. 2022, 5, 555–563.

[20]

Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Fan, Z. D.; Jin, J.; Wang, M. L.; Sun, J. Y. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries. Adv. Funct. Mater. 2021, 31, 2006798.

[21]

Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.

[22]

Cai, J. S.; Jin, J.; Fan, Z. D.; Li, C.; Shi, Z. X.; Sun, J. Y.; Liu, Z. F. 3D printing of a V8C7-VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 2020, 32, 2005967.

[23]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[24]

Jiang, Z. P.; Zeng, Z. Q.; Hu, W.; Han, Z. L.; Cheng, S. J.; Xie, J. Diluted high concentration electrolyte with dual effects for practical lithium-sulfur batteries. Energy Storage Mater. 2021, 36, 333–340.

[25]

Zheng, J.; Ji, G. B.; Fan, X. L.; Chen, J.; Li, Q.; Wang, H. Y.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. S. High-fluorinated electrolytes for Li-S batteries. Adv. Energy Mater. 2019, 9, 1803774.

[26]

Shi, Z. X.; Tian, Z. N.; Guo, D.; Wang, Y. Z.; Bayhan, Z.; Alzahrani, A. S.; Alshareef, H. N. Kinetically favorable Li-S battery electrolytes. ACS Energy Lett. 2023, 8, 3054–3080.

[27]

Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F. Radical or not radical: Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 2015, 5, 1401801.

[28]

Baek, M.; Shin, H.; Char, K.; Choi, J. W. New high donor electrolyte for lithium-sulfur batteries. Adv. Mater. 2020, 32, 2005022.

[29]

Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.

[30]

Wu, F. X.; Chu, F. L.; Ferrero, G. A.; Sevilla, M.; Fuertes, A. B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte. Nano Lett. 2020, 20, 5391–5399.

[31]

Ye, G.; Zhao, M.; Hou, L. P.; Chen, W. J.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. Evaluation on a 400 Wh·kg–1 lithium-sulfur pouch cell. J. Energy Chem. 2022, 66, 24–29.

[32]

Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.

[33]

Ye, H. L.; Sun, J. G.; Zhao, Y.; Lee, J. Y. An integrated approach to improve the performance of lean-electrolyte lithium-sulfur batteries. J. Energy Chem. 2022, 67, 585–592.

[34]

Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J. W. Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2001456.

[35]

Zhang, J. H.; Fu, Q. S.; Li, P.; Linghu, R. B.; Fan, X. Z.; Lin, H. B.; Bian, J. C.; Han, S. B.; Sun, G. Z.; Kong, L. Lithium polysulfide solvation and speciation in the aprotic lithium-sulfur batteries. Particuology 2024, 89, 238–245.

[36]

Cheng, H. R.; Sun, Q. J.; Li, L. L.; Zou, Y. G.; Wang, Y. Q.; Cai, T.; Zhao, F.; Liu, G.; Ma, Z.; Wahyudi, W. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 2022, 7, 490–513.

[37]

Kim, H.; Hwang, J. Y.; Ham, Y. G.; Choi, H. N.; Alfaruqi, M. H.; Kim, J.; Yoon, C. S.; Sun, Y. K. Turning on lithium-sulfur full batteries at -10 °C. ACS Nano 2023, 17, 14032–14042.

[38]

Liang, P.; Hu, H. L.; Dong, Y.; Wang, Z. D.; Liu, K. M.; Ding, G. Y.; Cheng, F. Y. Competitive coordination of ternary anions enabling fast Li-ion desolvation for low-temperature lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2309858.

[39]

Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.

[40]

Song, G.; Yi, Z. L.; Su, F. Y.; Xie, L. J.; Wang, Z. B.; Wei, X. X.; Xu, G. N.; Chen, C. M. Boosting the low-temperature performance for Li-ion batteries in LiPF6-based local high-concentration electrolyte. ACS Energy Lett. 2023, 8, 1336–1343.

[41]

Lu, Z.; Liu, D.; Dai, K.; Liu, K. L.; Jing, C. Y.; He, W. T.; Wang, W. R.; Zhang, C. X.; Wei, W. F. Tailoring solvation chemistry in carbonate electrolytes for all-climate, high-voltage lithium-rich batteries. Energy Storage Mater. 2023, 57, 316–325.

[42]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[43]

Jiang, C.; Jia, Q. Q.; Tang, M.; Fan, K.; Chen, Y.; Sun, M. X.; Xu, S. F.; Wu, Y. C.; Zhang, C. Y.; Ma, J. et al. Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium-metal anodes. Angew. Chem., Int. Ed. 2021, 60, 10871–10879.

[44]

Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.

[45]

Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Yang, X. Z.; Wei, C. H.; Wang, M. L.; Ding, Y. F.; Sun, J. Y. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li-S batteries. Adv. Mater. 2021, 33, 2103050.

[46]

Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

[47]

Kong, L.; Chen, J. X.; Peng, H. J.; Huang, J. Q.; Zhu, W. C.; Jin, Q.; Li, B. Q.; Zhang, X. T.; Zhang, Q. Current-density dependence of Li2S/Li2S2 growth in lithium-sulfur batteries. Energy Environ. Sci. 2019, 12, 2976–2982.

[48]

Bewick, A.; Fleischmann, M.; Thirsk, H. R. Kinetics of the electrocrystallization of thin films of calomel. Trans. Faraday Soc. 1962, 58, 2200–2216.

[49]

Scharifker, B.; Hills, G. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 1983, 28, 879–889.

[50]

Lu, Y.; Qin, J. L.; Shen, T.; Yu, Y. F.; Chen, K.; Hu, Y. Z.; Liang, J. N.; Gong, M. X.; Zhang, J. J.; Wang, D. L. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv. Energy Mater. 2021, 11, 2101780.

[51]

Wang, Z. J.; Wang, Y. Y.; Li, B. H.; Bouwer, J. C.; Davey, K.; Lu, J.; Guo, Z. P. Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202206682.

[52]

Zhang, G.; Peng, H. J.; Zhao, C. Z.; Chen, X.; Zhao, L. D.; Li, P.; Huang, J. Q.; Zhang, Q. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16732–16736.

[53]

Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J. C.; Patoux, S.; Alloin, F. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal. Chem. 2012, 84, 3973–3980.

[54]

Wahyudi, W.; Guo, X. R.; Ladelta, V.; Tsetseris, L.; Nugraha, M. I.; Lin, Y. B.; Tung, V.; Hadjichristidis, N.; Li, Q.; Xu, K. et al. Hitherto unknown solvent and anion pairs in solvation structures reveal new insights into high-performance lithium-ion batteries. Adv. Sci. 2022, 9, 2202405.

[55]

See, K. A.; Leskes, M.; Griffin, J. M.; Britto, S.; Matthews, P. D.; Emly, A.; van der Ven, A.; Wright, D. S.; Morris, A. J.; Grey, C. P. et al. Ab initio structure search and in situ 7Li NMR studies of discharge products in the Li-S battery system. J. Am. Chem. Soc. 2014, 136, 16368–16377.

[56]

Zhang, B. H.; Wu, J. F.; Gu, J. K.; Li, S.; Yan, T. Y.; Gao, X. P. The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium-sulfur batteries. ACS Energy Lett. 2021, 6, 537–546.

[57]

Ye, W. C.; Shen, C. M.; Tian, J. F.; Wang, C. M.; Bao, L. H.; Gao, H. J. Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem. Commun. 2008, 10, 625–629.

[58]

Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy. Adv. Sci. 2017, 4, 1600168.

[59]

Pan, H. L.; Han, K. S.; Engelhard, M. H.; Cao, R. G.; Chen, J. Z.; Zhang, J. G.; Mueller, K. T.; Shao, Y. Y.; Liu, J. Addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 2018, 28, 1707234.

[60]

Zheng, X. Y.; Cao, Z.; Luo, W.; Zhao, T.; Han, Y.; Yang, H.; Liu, X. Y.; Zhou, Y.; Wen, J. Y.; Shen, Y. et al. Liberating the electrolyte via in situ conversion of an amide, sulfonate-containing monomer precursor for high-temperature graphite/NCM batteries. Adv. Funct. Mater. 2023, 33, 2301550.

[61]

Fan, Q. N.; Zhang, S. L.; Jiang, J. C.; Lie, W.; Pang, W. K.; Gu, Q. F.; Yang, W. S.; Liu, H. K.; Wang, J. Z.; Guo, Z. P. A green and effective organocatalyst for faster oxidation of Li2S in electrochemical processes. Adv. Funct. Mater. 2023, 33, 2212796.

[62]

Gupta, A.; Bhargav, A.; Manthiram, A. Highly solvating electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1803096.

[63]

Elabd, A.; Kim, J.; Sethio, D.; Kang, S.; Kang, T.; Choi, J. W.; Coskun, A. Dual functional high donor electrolytes for lithium-sulfur batteries under lithium nitrate free and lean electrolyte conditions. ACS Energy Lett. 2022, 7, 2459–2468.

[64]

Cheng, Q.; Xu, W. H.; Qin, S. Y.; Das, S.; Jin, T. W.; Li, A. J.; Li, A. C.; Qie, B.; Yao, P. C.; Zhai, H. W. et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 5557–5561.

Nano Research Energy
Cite this article:
Shi Z, Thomas S, Tian Z, et al. A tailored highly solvating electrolyte toward ultra lean-electrolyte Li–S batteries. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120126

1450

Views

494

Downloads

1

Crossref

0

Scopus

Altmetrics

Received: 20 March 2024
Revised: 07 April 2024
Accepted: 09 May 2024
Published: 29 May 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return