AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Theoretical catalytic performance of single-atom catalysts M1/PW12O40 for alkyne hydrogenation materials

Shamraiz Hussain Talib2Xuelian Jiang3Shixiang Feng4Mengdie Zhao1Qi Yu1,3( )
School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
Show Author Information

Graphical Abstract

Abstract

Single-atom catalysts (SACs) have provoked significant curiosity in heterogeneous catalysis due to the benefits of maximum metal atoms usage, robust metal-support interaction, single-metal-atom active sites, and high catalytic efficiency. In this study, the electronic structures and catalytic mechanism of ethyne hydrogenation of SACs with the group-9 metal atoms M1 (M1= Co, Rh, Ir) anchored on PTA (phosphotungstic acid) cluster have been explored by using first-principles quantum calculations. It is found that the catalytic activity of ethyne (C2H2) hydrogenation is determined by two critical parameters: the adsorption energies of the adsorbate (H2, C2H2) and the activation energy barrier of ethyne hydrogenation. We have shown that the reaction pathway of ethyne hydrogenation reaction on the experimentally characterized Rh1/PTA at room temperature consists of three steps: C2H2 and H2 coadsorption on Rh1/PTA, H2 attacking C2H2 to form C2H4, then C2H4 desorbing or further reacting with H2 to produce C2H6 and completing the catalytic cycle. The Rh1/PTA possesses fair catalytic activity with a C2H4 desorption energy of 1.46 eV and a 2.59 eV barrier for ethylene hydrogenation. Moreover, micro-kinetics analysis is also carried out to understand the mechanism and catalytic performance further. The work reveals that the PTA-supported SACs can be a promising catalyst for alkyne hydrogenation.

Electronic Supplementary Material

Download File(s)
0128_ESM.pdf (388.3 KB)

References

[1]

Xing, D. H.; Xu, C. Q.; Wang, Y. G.; Li, J. Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiyne-supported triatomic clusters. J. Phys. Chem. C 2019, 123, 10494–10500.

[2]

Xu, R.; Meisner, J.; Chang, A. M.; Thompson, K. C.; Martínez, T. J. First principles reaction discovery: From the Schrödinger equation to experimental prediction for methane pyrolysis. Chem. Sci. 2023, 14, 7447–7464.

[3]

Hao, H. G.; Zhao, Y. F.; Chen, D. M.; Yu, J. M.; Tan, K.; Ma, S. Q.; Chabal, Y.; Zhang, Z. M.; Dou, J. M.; Xiao, Z. H. et al. Simultaneous trapping of C2H2 and C2H6 from a ternary mixture of C2H2/C2H4/C2H6 in a robust metal-organic framework for the purification of C2H4. Angew. Chem., Int. Ed. 2018, 130, 16299–16303.

[4]

Huang, F.; Peng, M.; Chen, Y. L.; Cai, X. B.; Qin, X. T.; Wang, N.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Low-temperature acetylene semi-hydrogenation over the Pd1-Cu1 dual-atom catalyst. J. Am. Chem. Soc. 2022, 144, 18485–18493.

[5]

Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061.

[6]

Chen, H. W.; Wang, B. Y.; Zhang, B.; Chen, J. H.; Gui, J. B.; Shi, X. F.; Yan, W. F.; Li, J. P.; Li, L. B. Deep removal of trace C2H2 and CO2 from C2H4 by using customized potassium-exchange mordenite. Chem. Sci. 2023, 14, 7068–7075.

[7]

Huang, J.; Dai, J. W.; Zhu, J. N.; Chen, R.; Fu, X. Q.; Liu, H. F.; Li, G. F. Bimetallic Au-Cu gradient alloy for electrochemical CO2 reduction into C2H4 at low overpotential. J. Catal. 2022, 415, 134–141.

[8]

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

[9]

Zhuo, H. Y.; Yu, X. H.; Yu, Q.; Xiao, H.; Zhang, X.; Li, J. Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts. Sci. China Mater. 2020, 63, 1741–1749.

[10]

Li, Z. J.; Leng, L. P.; Lu, X. W.; Zhang, M. Y.; Xu, Q.; Horton, J. H.; Zhu, J. F. Single palladium atoms stabilized by β-FeOOH nanorod with superior performance for selective hydrogenation of cinnamaldehyde. Nano Res. 2022, 15, 3114–3121.

[11]

Liu, J.; Bunes, B. R.; Zang, L.; Wang, C. Y. Supported single-atom catalysts: Synthesis, characterization, properties, and applications. Environ. Chem. Lett. 2018, 16, 477–505.

[12]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

[13]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[14]

Zhu, Q. X.; Lu, X. W.; Ji, S. Q.; Li, H. H.; Wang, J.; Li, Z. J. Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene. J. Catal. 2022, 405, 499–507.

[15]

Li, L. L.; Ul Hasan, I. M.; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[16]

Li, Z. J.; Zhang, M. Y.; Dong, X. L.; Ji, S. Q.; Zhang, L. L.; Leng, L. P.; Li, H. H.; Horton, J. H.; Xu, Q.; Zhu, J. F. Strong electronic interaction of indium oxide with palladium single atoms induced by quenching toward enhanced hydrogenation of nitrobenzene. Appl. Catal. B Environ. 2022, 313, 121462.

[17]

Zhang, L.; Lin, J.; Liu, Z. P.; Zhang, J. Non-noble metal-based catalysts for acetylene semihydrogenation: From thermocatalysis to sustainable catalysis. Sci. China Chem. 2023, 66, 1963–1974.

[18]

Vennewald, M.; Sackers, N. M.; Iemhoff, A.; Kappel, I.; Weidenthaler, C.; Meise, A.; Heggen, M.; Dunin-Borkowski, R. E.; Keenan, L.; Palkovits, R. Dynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation. J. Catal. 2023, 421, 134–144.

[19]

Copéret, C.; Comas-Vives, A.; Conley, M. P.; Estes, D. P.; Fedorov, A.; Mougel, V.; Nagae, H.; Núñez-Zarur, F.; Zhizhko, P. A. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: Strategies, methods, structures, and activities. Chem. Rev. 2016, 116, 323–421.

[20]

He, P. L.; Xu, B.; Xu, X. B.; Song, L.; Wang, X. Surfactant encapsulated palladium-polyoxometalates: Controlled assembly and their application as single-atom catalysts. Chem. Sci. 2016, 7, 1011–1015.

[21]

Hülsey, M. J.; Zhang, J. G.; Yan, N. Harnessing the wisdom in colloidal chemistry to make stable single-atom catalysts. Adv. Mater. 2018, 30, 1802304.

[22]

Zhang, Z.; Liu, Y. W.; Tian, H. R.; Ma, X. J.; Yue, Q.; Sun, Z. X.; Lu, Y.; Liu, S. X. Hierarchically ordered macro-microporous polyoxometalate-based metal-organic framework single crystals. ACS Nano 2021, 15, 16581–16588.

[23]

Boomadevi, S.; Mittal, H. P.; Dhansekaran, R. Synthesis, crystal growth and characterization of 3-methyl 4-nitropyridine 1-oxide (POM) single crystals. J. Cryst. Growth 2004, 261, 55–62.

[24]

Keita, B.; Nadjo, L. Polyoxometalate-based homogeneous catalysis of electrode reactions: Recent achievements. J. Mol. Catal. A Chem. 2007, 262, 190–215.

[25]

Zhang, G. J.; Keita, B.; Craescu, C. T.; Miron, S.; De Oliveira, P.; Nadjo, L. Polyoxometalate binding to human serum albumin: A thermodynamic and spectroscopic approach. Phys. Chem. B 2007, 111, 11253–11259.

[26]

Boyer, K. K.; Swink, M.; Rosenzweig, E. D. Operations strategy research in the POMS journal. Product. Operat. Manag. 2005, 14, 442–449.

[27]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[28]

Liu, Y. W.; Wu, X.; Li, Z.; Zhang, J.; Liu, S. X.; Liu, S. J.; Gu, L.; Zheng, L. R.; Li, J.; Wang, D. S. et al. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nat. Commun. 2021, 12, 4205.

[29]

Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 128, 8459–8463.

[30]

Zhang, B.; Asakura, H.; Yan, N. Atomically dispersed rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Ind. Eng. Chem. Res. 2017, 56, 3578–3587.

[31]

Hülsey, M. J.; Zhang, B.; Ma, Z. R.; Asakura, H.; Do, D. A.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z. L.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330.

[32]

Talib, S. H.; Yu, X. H.; Lu, Z. S.; Ahmad, K.; Yang, T. T.; Xiao, H.; Li, J. A polyoxometalate cluster-based single-atom catalyst for NH3 synthesis via an enzymatic mechanism. J. Mater. Chem. A 2022, 10, 6165–6177.

[33]

Talib, S. H.; Lu, Z. S.; Yu, X. H.; Ahmad, K.; Bashir, B.; Yang, Z. X.; Li, J. Theoretical inspection of M1/PMA single-atom electrocatalyst: Ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 2021, 11, 8929–8941.

[34]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[35]

Zhang, B.; Sun, G.; Ding, S. P.; Asakura, H.; Zhang, J.; Sautet, P.; Yan, N. Atomically dispersed Pt1-polyoxometalate catalysts: How does metal-support interaction affect stability and hydrogenation activity? J. Am. Chem. Soc. 2019, 141, 8185–8197.

[36]

Zhu, M. S. Cryogenic electrolytes and catalysts for zinc air batteries. Nano Res. Energy 2023, 2, e9120038.

[37]

Talib, S. H.; Yu, X. H.; Yu, Q.; Baskaran, S.; Li, J. Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation. Sci. China Mater. 2020, 63, 1003–1014.

[38]

Maniopoulou, A.; Davidson, E. R. M.; Grau-Crespo, R.; Walsh, A.; Bush, I. J.; Catlow, C. R. A.; Woodley, S. M. Introducing k-point parallelism into VASP. Comput. Phys. Commun. 2012, 183, 1696–1701.

[39]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[40]

Torrent, M.; Holzwarth, N. A. W.; Jollet, F.; Harris, D.; Lepley, N.; Xu, X. Electronic structure packages: Two implementations of the projector augmented wave (PAW) formalism. Comput. Phys. Commun. 2010, 181, 1862–1867.

[41]

Torrent, M.; Jollet, F.; Bottin, F.; Zérah, G.; Gonze, X. Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure. Comput. Mater. Sci. 2008, 42, 337–351.

[42]

Jollet, F.; Torrent, M.; Holzwarth, N. Generation of projector augmented-wave atomic data: A 71 element validated table in the XML format. Comput. Phys. Commun. 2014, 185, 1246–1254.

[43]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[44]

Zhang, Y. K.; Yang, W. T. Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 1998, 80, 890.

[45]

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matt. 2009, 21, 084204.

[46]

Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

[47]

Zarkevich, N. A.; Johnson, D. D. Nudged-elastic band method with two climbing images: Finding transition states in complex energy landscapes. J. Chem. Phys. 2015, 142, 024106.

[48]

Kästner, J.; Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 2008, 128, 014106.

[49]

Talib, S. H.; Lu, Z. S.; Bashir, B.; Hussain, S.; Ahmad, K.; Khan, S.; Haider, S.; Yang, Z. X.; Hermansson, K.; Li, J. CO oxidation on MXene (Mo2CS2) supported single-atom catalyst: A termolecular Eley-Rideal mechanism. Chin. Chem. Lett. 2023, 34, 107412.

[50]

Wang, C. Y.; Schechter, A.; Feng, L. G. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2023, 2, e9120056.

[51]

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

[52]

Wiberg, K. B.; Hadad, C. M.; Breneman, C. M.; Laidig, K. E.; Murcko, M. A.; LePage, T. J. The response of electrons to structural changes. Science 1991, 252, 1266–1272.

[53]

Groome, C.; Ngo, H.; Li, J.; Wang, C. S.; Wu, R. Q.; Ragan, R. Influence of magnetic moment on single atom catalytic activation energy barriers. Catal. Lett. 2022, 152, 1347–1357.

[54]

Zaidi, S. S. H.; Rajendran, S.; Sekar, A.; Elangovan, A.; Li, J.; Li, X. L. Binder-free Li-O2 battery cathodes using Ni- and PtRu-coated vertically aligned carbon nanofibers as electrocatalysts for enhanced stability. Nano Res. Energy 2023, 2, e9120055.

[55]

Zhang, L. Y.; Ren, X. Y.; Zhao, X. J.; Zhu, Y. D.; Pang, R.; Cui, P.; Jia, Y.; Li, S. F.; Zhang, Z. Y. Synergetic charge transfer and spin selection in CO oxidation at neighboring magnetic single-atom catalyst sites. Nano Lett. 2022, 22, 3744–3750.

[56]

Wang, Y. Y.; Ren, X. Y.; Jiang, B. J.; Deng, M.; Zhao, X. J.; Pang, R.; Li, S. F. Synergetic catalysis of magnetic single-atom catalysts confined in graphitic-C3N4/CeO2 (111) heterojunction for CO oxidization. J. Phys. Chem. Lett. 2022, 13, 6367–6375.

[57]

Kaiser, S. K.; Fako, E.; Manzocchi, G.; Krumeich, F.; Hauert, R.; Clark, A. H.; Safonova, O. V.; López, N.; Pérez-Ramírez, J. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 2020, 3, 376–385.

[58]

Ali, S.; Lian, Z.; Li, B. Density functional theory study of a graphdiyne-supported single Au atom catalyst for highly efficient acetylene hydrochlorination. ACS Appl. Nano Mater. 2021, 4, 6152–6159.

[59]

Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035.

[60]

Talib, S. H., Ali, B., Mohamed, S., Jiang, X. L., Ahmad, K., Qurashi, A., Li, J. Computational screening of M1/PW12O40 single-atom electrocatalysts for water splitting and oxygen reduction reactions. J. Mater. Chem. A 2023, 11, 16334–16348.

[61]

Kumar, K. V.; Porkodi, K.; Rocha, F. Langmuir-Hinshelwood kinetics-a theoretical study. Catal. Commun. 2008, 9, 82–84.

[62]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[63]

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

[64]

Liu, Z. P.; Wang, C. M.; Fan, K. N. Single gold atoms in heterogeneous catalysis: Selective 1,3-butadiene hydrogenation over Au/ZrO2. Angew. Chem., Int. Ed. 2006, 45, 6865–6868.

[65]

Liu, C. G.; Chu, Y. J.; Zhang, L. L.; Sun, C.; Shi, J. Y. Reduction of N2O by H2 catalyzed by Keggin-type phosphotungstic acid supported single-atom catalysts: An insight from density functional theory calculations. Environ. Sci. Technol. 2019, 53, 12893–12903.

[66]

Doornkamp, C.; Ponec, V. The universal character of the Mars and van Krevelen mechanism. J. Mol. Catal. A Chem. 2000, 162, 19–32.

[67]

Kuipers, E. W.; Vardi, A.; Danon, A.; Amirav, A. Surface-molecule proton transfer in the scattering of hyperthermal DABCO from H/Pt(111). Surf. Sci. 1992, 261, 299–312.

[68]

Zhang, L. L., Sun, M. J., Liu, C. G. CO oxidation on the phosphotungstic acid supported Rh single-atom catalysts via Rh-assisted Mans-van Krevelen mechanism. Mol. Catal. 2019, 462, 37–45.

[69]

Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

Nano Research Energy
Cite this article:
Talib SH, Jiang X, Feng S, et al. Theoretical catalytic performance of single-atom catalysts M1/PW12O40 for alkyne hydrogenation materials. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120128

919

Views

226

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 11 April 2024
Revised: 16 May 2024
Accepted: 24 May 2024
Published: 12 June 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return