AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

FeCoP sub-nanometric-sheets for electrocatalzing overall water splitting

Long Zhao1Kexin Meng1Yibo Guo2Qingsheng Wu1Quanjing Zhu1Tao Zhou1Yongqing Fu3Ming Wen1( )
School of Chemical Science and Engineering, School of Environmental Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
College of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE99, UK
Show Author Information

Graphical Abstract

Abstract

Renewable electrical energy for electrolysis water can achieve green industrial chains for hydrogen production. However, finding efficient electrocatalysts remains a challenge for green hydrogen. Herein, sub-nanometric FeCoP nanosheets with average thickness of 0.9 nm is constructed through 2D self-assembly driven by cavitation effect of ultrasonics and following phosphating. Benefiting from abundant active sites, enhanced H2O molecular adsorption kinetics, and highly enhanced structural stability, the subcrystalline FeCoP shows excellent electrocatalytic activities of hydrogen evolution reaction (HER) and oxygen evolution reactions (OER). Ultralow overpotential of 37 mV is achieved at 10 mA·cm−2 for HER. When the FeCoP catalyst was used as both cathode and anode for overall water splitting using renewable electrical energy, green hydrogen produced is directly applied for hydrogen fuel cell to drive fan for more than 10 h. Theoretical calculation indicates that subcrystalline FeCoP more easily adsorbs H2O than crystalline one and thus speeds up the kinetics of Volmer step in HER process.

Electronic Supplementary Material

Download File(s)
0129_ESM.pdf (1.1 MB)

References

[1]

Jing, X. Y.; Mu, Y.; Gao, Z. M.; Dong, X. Y.; Meng, C. G.; Huang, C.; Zhang, Y. F. Intermetallic ferric nickel silicide alloy derived from magadiite by magnesiothermic reaction as bifunctional electrocatalyst for overall water splitting. Nano Res. Energy 2024, 3, e9120104.

[2]

Li, L.; Hu, J. S.; Wei, Z. D. Preface to special issue on water electrolysis for hydrogen production. J. Electrochem. 2022, 28, 22214000.

[3]

Mu, X. Q.; Gu, X. Y.; Dai, S. P.; Chen, J. B.; Cui, Y. J.; Chen, Q.; Yu, M.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy Environ. Sci. 2022, 15, 4048–4057.

[4]

Xu, S. R.; Feng, S. H.; Yu, Y.; Xue, D. P.; Liu, M. L.; Wang, C.; Zhao, K. Y.; Xu, B. J.; Zhang, J. N. Dual-site segmentally synergistic catalysis mechanism: Boosting CoFeS x nanocluster for sustainable water oxidation. Nat. Commun. 2024, 15, 1720.

[5]

Huang, C. J.; Xu, H. M.; Shuai, T. Y.; Zhan, Q. N.; Zhang, Z. J.; Li, G. R. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B: Environ. 2023, 325, 122313.

[6]

Zhou, X. Y.; Yang, T. T.; Li, T.; Zi, Y. J.; Zhang, S. J.; Yang, L.; Liu, Y. K.; Yang, J.; Tang, J. J. In- situ fabrication of carbon compound NiFeMo-P anchored on nickel foam as bi-functional catalyst for boosting overall water splitting. Nano Res. Energy 2023, 2, e9120086.

[7]

Li, Y.; Dong, Z. H.; Jiao, L. F. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104.

[8]

Agarwal, A.; Sankapal, B. R. Metal phosphides: Topical advances in the design of supercapacitors. J. Mater. Chem. A 2021, 9, 20241–20276.

[9]

Naderi, L.; Shahrokhian, S. Nickel vanadium sulfide grown on nickel copper phosphide dendrites/Cu fibers for fabrication of all-solid-state wire-type micro-supercapacitors. Chem. Eng. J. 2020, 392, 124880.

[10]

Indra, A.; Menezes, P. W.; Zaharieva, I.; Baktash, E.; Pfrommer, J.; Schwarze, M.; Dau, H.; Driess, M. Active mixed-valent MnO x water oxidation catalysts through partial oxidation (corrosion) of nanostructured MnO particles. Angew. Chem., Int. Ed. 2013, 52, 13206–13210.

[11]

Zhang, W. Q.; Li, Y.; Zhou, L. X.; Zheng, Q. J.; Xie, F. Y.; Lam, K. H.; Lin, D. M. Ultrathin amorphous CoFeP nanosheets derived from CoFe LDHs by partial phosphating as excellent bifunctional catalysts for overall water splitting. Electrochim. Acta 2019, 323, 134595.

[12]

Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067–4077.

[13]

Zhao, L.; Wen, M.; Tian, Y. K.; Wu, Q. S.; Fu, Y. Q. A novel structure of quasi-monolayered NiCo-bimetal-phosphide for superior electrochemical performance. J. Energy Chem. 2022, 74, 203–211.

[14]

Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

[15]

Chen, D. W.; Dong, C. L.; Zou, Y. Q.; Su, D.; Huang, Y. C.; Tao, L.; Dou, S.; Shen, S. H.; Wang, S. Y. In situ evolution of highly dispersed amorphous CoO x clusters for oxygen evolution reaction. Nanoscale 2017, 9, 11969–11975.

[16]

Zhou, Y.; Fan, H. J. Progress and challenge of amorphous catalysts for electrochemical water splitting. ACS Mater. Lett. 2021, 3, 136–147.

[17]

Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.

[18]

Risch, M.; Ringleb, F.; Kohlhoff, M.; Bogdanoff, P.; Chernev, P.; Zaharieva, I.; Dau, H. Water oxidation by amorphous cobalt-based oxides: In situ tracking of redox transitions and mode of catalysis. Energy Environ. Sci. 2015, 8, 661–674.

[19]

Deng, K.; Mao, Q. Q.; Wang, W. X.; Wang, P.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting. Appl. Catal. B: Environ. 2022, 310, 121338.

[20]

Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285.

[21]

Tan, Y. W.; Wang, H.; Liu, P.; Shen, Y. H.; Cheng, C.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 2016, 9, 2257–2261.

[22]

Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 2015, 54, 6251–6054.

[23]

Liu, Y. R.; Du, Y. M.; Gao, W. K.; Dong, B.; Han, Y.; Wang, L. Surface phosphorsulfurization of NiCo2O4 nanoneedles supported on carbon cloth with enhanced electrocatalytic activity for hydrogen evolution. Electrochim. Acta 2018, 290, 339–346.

[24]

Du, Y. M.; Zhang, M. J.; Wang, Z. C.; Liu, Y. R.; Liu, Y. J.; Geng, Y. L.; Wang, L. A self-templating method for metal-organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 8602–8608.

[25]

Qu, G. X.; Zhao, Y. W.; Zhao, G. L.; Zhou, Y.; Cai, S. K.; Kang, Y. J.; Xu, C. Ultrahigh length-to-diameter ratio nickel phosphide nanowires as pH-wide electrocatalyst for efficient hydrogen evolution. Electrochim. Acta 2019, 298, 943–949.

[26]

Li, M.; Liu, T. T.; Bo, X. J.; Zhou, M.; Guo, L. P.; Guo, S. J. Hybrid carbon nanowire networks with Fe-P bond active site for efficient oxygen/hydrogen-based electrocatalysis. Nano Energy 2017, 33, 221–228.

[27]

Montgomery, C. L.; Amtawong, J.; Jordan, A. M.; Kurtz, D. A.; Dempsey, J. L. Proton transfer kinetics of transition metal hydride complexes and implications for fuel-forming reactions. Chem. Soc. Rev. 2023, 52, 7137–7169.

[28]

Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

[29]

Sun, H.; Min, Y. X.; Yang, W. J.; Lian, Y. B.; Lin, L.; Feng, K.; Deng, Z.; Chen, M. Z.; Zhong, J.; Xu, L. et al. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal. 2019, 9, 8882–8892.

[30]

Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci. 2018, 5, 1700464.

[31]

Su, J. Z.; Zhou, J. L.; Wang, L.; Liu, C.; Chen, Y. B. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Sci. Bull. 2017, 62, 633–644.

[32]

Jin, J.; Wang, X. Y.; Hu, Y.; Zhang, Z.; Liu, H. B.; Yin, J.; Xi, P. X. Precisely control relationship between sulfur vacancy and H absorption for boosting hydrogen evolution reaction. Nano-Micro Lett. 2024, 16, 63.

[33]

Jin, J.; Yin, J.; Liu, H. B.; Huang, B. L.; Hu, Y.; Zhang, H.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 14117–14123.

[34]

Shuai, C.; Mo, Z. L.; Niu, X. H.; Zhao, P.; Dong, Q. B.; Chen, Y.; Liu, N. J.; Guo, R. B. Nickel/cobalt bimetallic phosphides derived metal-organic frameworks as bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. J. Alloys Compd. 2020, 847, 156514.

[35]

Conway, B. E.; Salomon, M. Electrochemical reaction orders: Applications to the hydrogen-and oxygen-evolution reactions. Electrochim. Acta 1964, 9, 1599–1615.

[36]

Nai, J. W.; Lu, Y.; Yu, L.; Wang, X.; Lou, X. W. Formation of Ni–Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv. Mater. 2017, 29, 1703870.

[37]

Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.

[38]

Dong, Z. H.; Lin, F.; Yao, Y. H.; Jiao, L. F. Crystalline Ni(OH)2/amorphous NiMoO x mixed-catalyst with Pt-like performance for hydrogen production. Adv. Energy Mater. 2019, 9, 1902703.

[39]

Hao, J. H.; Yang, W. S.; Zhang, Z.; Tang, J. L. Metal-organic frameworks derived Co x Fe1– x P nanocubes for electrochemical hydrogen evolution. Nanoscale 2015, 7, 11055–11062.

[40]

Jin, J.; Yin, J.; Hu, Y.; Zheng, Y.; Liu, H. B.; Wang, X. Y.; Xi, P. X.; Yan, C. H. Stabilizing sulfur sites in tetraoxygen tetrahedral coordination structure for efficient electrochemical water oxidation. Angew. Chem., Int. Ed. 2024, 63, e202313185.

[41]

Lu, X. Q.; Xu, H.; Yang, T. F.; Chen, X. D.; Cheng, Z.; Hou, Q.; Lin, X. J.; Liu, S. Y.; Wei, S. X.; Wang, Z. J. Co3+-rich CoFe-PBA encapsulated in ultrathin MoS2 sheath as integrated core-shell architectures for highly efficient OER. J. Alloy. Compd. 2023, 942, 169004.

[42]

Boppella, R.; Tan, J.; Yang, W.; Moon, J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv. Funct. Mater. 2019, 29, 1807976.

[43]

Chai, L.; Liu, S. L.; Pei, S. T.; Wang, C. Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting. Chem. Eng. J. 2021, 420, 129686.

[44]

Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.

[45]

Wu, M. Y.; Da, P. F.; Zhang, T.; Mao, J.; Liu, H.; Ling, T. Designing hybrid NiP2/NiO nanorod arrays for efficient alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 17896–17902.

Nano Research Energy
Cite this article:
Zhao L, Meng K, Guo Y, et al. FeCoP sub-nanometric-sheets for electrocatalzing overall water splitting. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120129

305

Views

52

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 21 April 2024
Revised: 02 June 2024
Accepted: 20 June 2024
Published: 08 July 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return