AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (20 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Tuning electrochemical properties of carbon nanofiber electrodes with selenium heteroatoms for flexible zinc ion capacitors

Wenjie LiuFen Qiao( )Jikang Zhao
School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, China
Show Author Information

Graphical Abstract

Abstract

The N-doping strategy is considered an effective method to regulate the electronic structure of carbon materials and improve their electrochemical performance. However, how to reasonably regulate the types of N-doping species remains a major challenge. Herein, we reported a self-supporting carbon nanofiber electrode codoped with N and Se (N/Se-CNF) for flexible zinc ion capacitor (ZIC). It was found that Se atoms can induce the reduction of Pyrrole-N, which is favorable for Zn ions transfer. Furthermore, ex-situ characterizations and theoretical density functional theory (DFT) calculations have shown that additional Se atoms can provide abundant reaction sites and reduce the adsorption energy of Zn ions. Accordingly, the N/Se-CNF electrode demonstrates impressive rate performance. The N/Se-CNF electrode shows impressive rate performance, retaining 60% capacitance at 20 A·g–1, with an energy density of 95.3 Wh·kg–1 and power density of 160.1 W·kg–1, and a commendable stability cycle, the capacitance retention is 88.1% after 18,000 cycles at a discharge rate of 5 A·g–1. Moreover, a flexible ZIC with N/Se-CNF electrode exhibits a high energy density of 68.8 Wh·kg–1 at 160 W·kg–1. This strategy innovatively regulates N-doping species and offers potential flexible electrodes for advanced energy storage devices.

Electronic Supplementary Material

Download File(s)
0131_ESM.pdf (2 MB)

References

[1]

Chen, K.; Ren, J. Y.; Chen, C. Y.; Xu, W.; Zhang, S. Safety and effectiveness evaluation of flexible electronic materials for next generation wearable and implantable medical devices. Nano Today 2020, 35, 100939.

[2]

Xie, P.; Yuan, W.; Liu, X. B.; Peng, Y. M.; Yin, Y. H.; Li, Y. S.; Wu, Z. P. Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater. 2021, 36, 56–76.

[3]

Xiao, Y. B.; Xu, Y. Z.; Zhang, K. Y.; Tang, X. N.; Huang, J.; Yuan, K.; Chen, Y. W. Coaxial electrospun free-standing and mechanically stable hierarchical porous carbon nanofiber membranes for flexible supercapacitors. Carbon 2020, 160, 80–87.

[4]

Dong, H. B.; Li, J. W.; Guo, J.; Lai, F. L.; Zhao, F. J.; Jiao, Y. D.; Brett, D. J. L.; Liu, T. X.; He, G. J.; Parkin, I. P. Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 2021, 33, 2007548.

[5]

Yin, J.; Zhang, W. L.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors: Fundamentals, materials, and systems. Adv. Energy Mater. 2021, 11, 2100201.

[6]

Yuan, L. B.; Hao, J. N.; Johannessen, B.; Ye, C.; Yang, F. H.; Wu, C.; Dou, S. X.; Liu, H. K.; Qiao, S. Z. Hybrid working mechanism enables highly reversible Zn electrodes. eScience 2023, 3, 100096.

[7]

Yu, L.; Li, J.; Ahmad, N.; He, X. Y.; Wan, G. L.; Liu, R.; Ma, X. Y.; Liang, J. C.; Jiang, Z. X.; Zhang, G. Q. Recent progress on carbon materials for emerging zinc-ion hybrid capacitors. J. Mater. Chem. A 2024, 12, 9400–9420.

[8]

Wang, L.; Peng, M. K.; Chen, J. R.; Tang, X. N.; Li, L. B.; Hu, T.; Yuan, K.; Chen, Y. W. High energy and power zinc ion capacitors: A dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano 2022, 16, 2877–2888.

[9]

Zhang, Z. C. Y.; Xi, B. J.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries. SusMat 2022, 2, 114–141.

[10]

Wang, S. L.; Wang, Q.; Zeng, W.; Wang, M.; Ruan, L. M.; Ma, Y. N. A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode. Nano-Micro Lett. 2019, 11, 70.

[11]

Lu, X. J.; Tao, L.; Qu, K. Q.; Amardeep, A.; Liu, J. “Duet-insurance” eutectic electrolytes for zinc-ion capacitor pouch cells. Adv. Funct. Mater. 2023, 33, 2211736.

[12]

Zhao, Y.; Wang, Y. Q.; Huang, Y. P.; Liu, W. J.; Hu, J. Z.; Zheng, J. H.; Wu, L. M. Nickel carbonate hydroxide-based core-triple-shelled nanofibers with ultrahigh specific capacity for flexible hybrid supercapacitors. J. Colloid Interface Sci. 2023, 630, 444–451.

[13]

Liu, W. J.; Qiao, F.; Yang, J. R.; Yuan, J.; Xie, Y.; Wang, T.; Hu, J. Z.; Zheng, J. H.; Ren, R.; Kang, X. M. et al. Cobalt disulfide/carbon nanofibers with mesoporous heterostructure and excellent hydrophilicity for high energy density asymmetric supercapacitor. Nano Res. 2023, 16, 10401–10411.

[14]

Nie, G. D.; Zhao, X. W.; Luan, Y. X.; Jiang, J. M.; Kou, Z. K.; Wang, J. Key issues facing electrospun carbon nanofibers in energy applications: On-going approaches and challenges. Nanoscale 2020, 12, 13225–13248.

[15]

Gao, Z. Y.; Xiao, X.; Carlo, A. D.; Yin, J. Y.; Wang, Y. X.; Huang, L. J.; Tang, J. G.; Chen, J. Advances in wearable strain sensors based on electrospun fibers. Adv. Funct. Mater. 2023, 33, 2214265.

[16]

Ohsawa, O.; Mayakrishnan, G.; Ge, Y.; Zhu, C. H.; Watanabe, K.; Kim, I. S. Water-based eco-friendly fabrication of physicochemically crosslinked and highly wettable PU-rich electrospun PU/PEO nanofiber composites with exceptional chemical and thermal stability. Green Chem. 2023, 25, 7556–7570.

[17]

Liu, M. Z.; Li, X. H.; Shao, C. L.; Han, C. H.; Liu, Y.; Li, X. W.; Ma, X. G.; Chen, F. Y.; Liu, Y. C. Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for high‐performance flexible energy storage. Energy Storage Mater. 2022, 44, 250–262.

[18]

Qiao, F.; Liu, W. J.; Yang, J.; Yuan, J. R.; Sun, K.Y.; Liu, P. F. Hydrogen production performance and theoretical mechanism analysis of chain-like ZnO/ZnS heterojunction. Int. J. Hydrogen Energy 2023, 48, 953–963.

[19]

Liu, W. J.; Zhao, Y.; Zheng, J. H.; Jin, D. Y.; Wang, Y. Q.; Lian, J. B.; Yang, S. L.; Li, G. C.; Bu, Y. F.; Qiao, F. Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 606, 728–735.

[20]

Liu, R. R.; Hou, L. L.; Yue, G. C.; Li, H. K.; Zhang, J. S.; Liu, J.; Miao, B. B.; Wang, N.; Bai, J.; Cui, Z. M. et al. Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv. Fiber Mater. 2022, 4, 604–630.

[21]

Zhang, H. Z.; Liu, Q. Y.; Fang, Y. B.; Teng, C. L.; Liu, X. Q.; Fang, P. P.; Tong, Y. X.; Lu, X. H. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948.

[22]

Yuan, H. D.; Zhang, W. K.; Wang, J. G.; Zhou, G. M.; Zhuang, Z. Z.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y. et al. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 1–9.

[23]

Zhao, Y.; Sun, Z. T.; Yi, Y. Y.; Lu, C.; Wang, M. L.; Xia, Z.; Lian, X. Y.; Liu, Z. F.; Sun, J. Y. Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 2021, 14, 1413–1420.

[24]

Chen, B.; Wang, D. S.; Zhang, B.; Zhong, X. W.; Liu, Y. Q.; Sheng, J. Z.; Zhang, Q.; Zou, X. L.; Zhou, G. M.; Cheng, H. M. Engineering the active sites of graphene catalyst: From CO2 activation to activate Li-CO2 batteries. ACS Nano 2021, 15, 9841–9850.

[25]

Xu, D.; Cheng, Q. L.; Saha, P.; Hu, Y. J.; Chen, L.; Jiang, H.; Li, C. Z. Engineering Se/N co-doped hard CNTs with localized electron configuration for superior potassium storage. Adv. Funct. Mater. 2023, 33, 2211661.

[26]

Shi, X.; Zhang, H. Z.; Zeng, S. Q.; Wang, J.; Cao, X. S.; Liu, X. Q.; Lu, X. H. Pyrrolic-dominated nitrogen redox enhances reaction kinetics of pitch-derived carbon materials in aqueous zinc ion hybrid supercapacitors. ACS Mater. Lett. 2021, 3, 1291–1299.

[27]

Li, J.; Zhang, J. H.; Yu, L.; Gao, J. Y.; He, X. Y.; Liu, H. H.; Guo, Y. M.; Zhang, G. Q. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors. Energy Storage Mater. 2021, 42, 705–714.

[28]

Gao, Q.; Agarwal, S.; Greiner, A.; Zhang, T. Electrospun fiber-based flexible electronics: Fiber fabrication, device platform, functionality integration and applications. Prog. Mater. Sci. 2023, 137, 101139.

[29]

Li, C. C.; Qin, B. S.; Zhang, Y. F.; Varzi, A.; Passerini, S.; Wang, J. Y.; Dong, J. M.; Zeng, D. L.; Liu, Z. H.; Cheng, H. S. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries. Adv. Energy Mater. 2019, 9, 1803422.

[30]

Zhang, Y. M.; Jiang, S. Y.; Li, Y. L.; Ren, X. Z.; Zhang, P. X.; Sun, L. N.; Yang, H. Y. In situ grown hierarchical electrospun nanofiber skeletons with embedded vanadium nitride nanograins for ultra-fast and super-long cycle life aqueous Zn-ion batteries. Adv. Energy Mater. 2023, 13, 2202826.

[31]

Li, J. W.; Hu, X.; Zhong, G. B.; Liu, Y. J.; Ji, Y. X.; Chen, J. X.; Wen, Z. H. A general self-sacrifice template strategy to 3D heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 2021, 13, 131.

[32]

Li, S. W.; Luo, X. Y.; Xiao, H. M.; Li, D.; Chen, Y. Nitrogen and sulfur codoped hierarchical porous carbon derived from lignin for high-performance zinc ion capacitors. ACS Appl. Energy Mater. 2023, 6, 6700–6711.

[33]

Huang, L. Q.; Tong, D.; Chen, H. S.; Zhu, H.; Zhang, F.; Sheng, Y. F.; Hu, Z. J.; Qian, T.; Liu, H. Y. Synthesis of ZIF-L-derived hollow carbons for zinc-ion capacitors. ACS Sustain. Chem. Eng. 2023, 11, 3702–3709.

[34]

Wang, L.; Peng, M. K.; Chen, J. R.; Hu, T.; Yuan, K.; Chen, Y. W. Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability. Adv. Mater. 2022, 34, 2203744.

[35]

Yang, B. B.; Liu, S. T.; Fedoseeva, Y. V.; Okotrub, A. V.; Makarova, A. A.; Jia, X. L.; Zhou, J. S. Engineering selenium-doped nitrogen-rich carbon nanosheets as anode materials for enhanced Na-ion storage. J. Power Sources 2021, 493, 229700.

[36]

Zhang, W. L.; Yin, J.; Jian, W. B.; Wu, Y.; Chen, L. H.; Sun, M. L.; Schwingenschlögl, U.; Qiu, X. Q.; Alshareef, H. N. Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy 2022, 103, 107827.

[37]

Yuan, B. B.; Sun, X. Z.; Zeng, L. C.; Yu, Y.; Wang, Q. S. A freestanding and long-life sodium-selenium cathode by encapsulation of selenium into microporous multichannel carbon nanofibers. Small 2018, 14, 1703252.

[38]

Ding, G. H.; Xiao, Y.; Zhang, Y. H.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Niu, H. L.; Zheng, F. C. Se/N co-doped carbon nanorods for potassium ion storage. Inorg. Chem. Front. 2022, 9, 4478–4485.

[39]

Lu, Y. Y.; Li, Z. W.; Bai, Z. Y.; Mi, H. Y.; Ji, C. C.; Pang, H.; Yu, C.; Qiu, J. S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 2019, 66, 104132.

[40]

Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.

[41]

He, H. C.; Lian, J. C.; Chen, C. M.; Xiong, Q. T.; Li, C. C.; Zhang, M. Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 2022, 14, 106.

[42]

Sun, C. K.; Zhang, X.; An, Y. B.; Li, C.; Wang, L.; Zhang, X. H.; Sun, X. Z.; Wang, K.; Zhang, H. T.; Ma, Y. W. Low-temperature carbonized nitrogen-doped hard carbon nanofiber toward high-performance sodium-ion capacitors. Energy Environ. Mater. 2023, 6, e12603.

[43]

Daraghmeh, A.; Hussain, S.; Haq, A. U.; Saadeddin, I.; Servera, L.; Ruiz, J. M. Carbon nanocomposite electrodes for electrical double layer capacitor. J. Energy Storage 2020, 32, 101798.

[44]

Jang, H. N.; Jo, M. H.; Ahn, H. J. Tailored functional group vitalization on mesoporous carbon nanofibers for ultrafast electrochemical capacitors. Appl. Surf. Sci. 2023, 623, 157081.

[45]

Sharma, D. S.; Patel, A. P.; Bariya, S. N.; Kapdi, Y. G.; Soni, S. S.; Patel, N. N.; Panjabi, S. H.; Patel, V. K. Electrospun PbS/PAN-PANI carbon nanofibers decorated on carbon cloth as pseudo-electrochemical capacitor material. ACS Appl. Electron. Mater. 2024, 6, 3617–3629.

[46]

Kim, J. G.; Kim, H. C.; Kim, N. D.; Khil, M. S. N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@SAN structure for high performance supercapacitor. Compos. Part B: Eng. 2020, 186, 107825.

[47]

Li, J.; Yu, L.; Wang, W. T.; He, X. Y.; Wang, G. R.; Liu, R.; Ma, X. Y.; Zhang, G. Q. Sulfur incorporation modulated absorption kinetics and electron transfer behavior for nitrogen rich porous carbon nanotubes endow superior aqueous zinc ion storage capability. J. Mater. Chem. A 2022, 10, 9355–9362.

[48]

Shang, K. Z.; Liu, Y. J.; Cai, P. W.; Li, K. K.; Wen, Z. H. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors. J. Mater. Chem. A 2022, 10, 6489–6498.

[49]

Li, Z. J.; Wang, D. Z.; Sun, Z. C.; Chu, S. Y.; Chen, P. N, P dual-doped MXene nanocomposites for boosting zinc-ion storage capability. Electrochim. Acta 2023, 455, 142440.

[50]

Wang, H.; Wang, M.; Tang, Y. B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018, 13, 1–7.

[51]

Chen, Q.; Cao, L. J.; Wang, H. R.; Zhou, Z. H.; Xiao, P. Oxygen/fluorine-functionalized flexible carbon electrodes for high-performance and anti-self-discharge Zn-ion hybrid capacitors. J. Power Sources 2022, 538, 231586.

[52]

Gong, S. G.; Xie, Y. F.; Zhao, J. X.; Liang, Q.; Huang, R. N.; Jia, X. T.; Chao, D. M.; Wang, C. Y. An electrolyte-rich nano-organic cathode constructs an ultra-high voltage zinc-ion battery. Chem. Eng. J. 2023, 476, 146619.

[53]

Li, X. Y.; Cai, C. C.; Hu, P.; Zhang, B.; Wu, P. J.; Fan, H.; Chen, Z.; Zhou, L.; Mai, L.; Fan, H. J. Gradient pores enhance charge storage density of carbonaceous cathodes for Zn-ion capacitor. Adv. Mater. 2024, 36, 2400184.

[54]

Jin, J. L.; Geng, X. S.; Chen, Q.; Ren, T. L. A better Zn-ion storage device: Recent progress for Zn-ion hybrid supercapacitors. Nano-Micro Lett. 2022, 14, 64.

Nano Research Energy
Cite this article:
Liu W, Qiao F, Zhao J. Tuning electrochemical properties of carbon nanofiber electrodes with selenium heteroatoms for flexible zinc ion capacitors. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120131

298

Views

61

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 09 May 2024
Revised: 02 July 2024
Accepted: 04 July 2024
Published: 18 July 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return