AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access | Online First

Photoelectrocatalytic hydrogen production: Hydrogen production principle, performance optimization strategy, application and prospect

School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, China
Show Author Information

Graphical Abstract

Abstract

Photoelectrocatalytic hydrogen production is a sustainable energy technology that utilizes solar energy to decompose water into hydrogen and oxygen. It offers the advantages of environmental protection and sustainability. However, its low efficiency in photoelectric water splitting results in relatively small hydrogen production, which severely limits its popularization in practical applications. This paper reviewed the technology of photoelectric catalytic hydrogen production, including the principle of photoelectric catalysis, catalyst materials, reaction mechanism and kinetics, reaction conditions and optimization, as well as the challenges and prospects. The catalysts for efficient hydrogen production as well as the strategies for improving hydrogen production rate were discussed in detail, including the use of catalysts, co-catalysts, integrated optimization of reaction conditions and photoelectrodes. It also covered research on reaction kinetics, multi-physical field simulation and optimization. The paper provided a comprehensive theoretical basis and practical guidance for research in related fields.

References

[1]

Diyali, S.; Diyali, N.; Biswas, B. Coordination-driven electrocatalysts as an evolving wave of enthusiasm for sustainable hydrogen production. Coordin. Chem. Rev. 2024, 500, 215496.

[2]

Zainal, B. S.; Ker, P. J.; Mohamed, H.; Ong, H. C.; Fattah, I. M. R.; Ashrafur Rahman, S. M.; Nghiem, L. D.; Mahlia, T. M. I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sust. Energy Rev. 2024, 189, 113941.

[3]

Wang, X. P.; Jin, Z. L. Adjusting inter-semiconductor barrier height via crystal plane engineering: Crystalline face exposed single crystal cadmium sulfide augmentative S-scheme heterojunctions for efficiently photocatalytic hydrogen production. Appl. Catal. B Environ. 2024, 342, 123373.

[4]

Ramkumar, G.; Tamilselvi, M.; Sundarsingh Jebaseelan, S. D.; Mohanavel, V.; Kamyab, H.; Anitha, G.; Prabu, R. T.; Rajasimman, M. Enhanced machine learning for nanomaterial identification of photo thermal hydrogen production. Int. J. Hydrogen Energy 2024, 52, 696–708.

[5]

Tasneem, S.; Ageeli, A. A.; Alamier, W. M.; Hasan, N.; Safaei, M. R. Organic catalysts for hydrogen production from noodle wastewater: Machine learning and deep learning-based analysis. Int. J. Hydrogen Energy 2024, 52, 599–616.

[6]

Poudel, M. B.; Logeshwaran, N.; Prabhakaran, S.; Kim, A. R.; Kim, D. H.; Yoo, D. J. Low-cost hydrogen production from alkaline/seawater over a single-step synthesis of Mo3Se4-NiSe core-shell nanowire arrays. Adv. Mater. 2024, 36, 2305813.

[7]

Bekirogullari, M. Synthesis of waste eggshell-derived Au/Co/Zn/eggshell nanocomposites for efficient hydrogen production from NaBH4 methanolysis. Int. J. Hydrogen Energy 2024, 52, 1380–1389.

[8]

Jayaprabakar, J.; Sri Hari, N. S.; Badreenath, M.; Anish, M.; Joy, N.; Prabhu, A.; Rajasimman, M.; Kumar, J. A. Nano materials for green hydrogen production: Technical insights on nano material selection, properties, production routes and commercial applications. Int. J. Hydrogen Energy 2024, 52, 674–686.

[9]

Koshariya, A. K.; Krishnan, M. S.; Jaisankar, S.; Loganathan, G. B.; Sathish, T.; Ağbulut, Ü.; Saravanan, R.; Tuan, L. T.; Pham, N. D. K. Waste to energy: An experimental study on hydrogen production from food waste gasification. Int. J. Hydrogen Energy 2024, 54, 1–12.

[10]

Li, T.; Tsubaki, N.; Jin. Z. L. S-scheme heterojunction in photocatalytic hydrogen production. J. Mater. Sci. Technol. 2024, 169, 82–104.

[11]

Singh, P. P.; Jaswal, A.; Singh, R.; Mondal, T.; Pant, K. K. Green hydrogen production from biomass-A thermodynamic assessment of the potential of conventional and advanced bio-oil steam reforming processes. Int. J. Hydrogen Energy 2024, 50, 627–639.

[12]

Ren, J. T.; Chen, L.; Wang, H. Y.; Tian, W. W.; Yuan, Z. Y. Water electrolysis for hydrogen production: From hybrid systems to self-powered/catalyzed devices. Energy Environ. Sci. 2024, 17, 49–113.

[13]

Onwuemezie, L.; Gohari Darabkhani, H.; Montazeri-Gh, M. Pathways for low carbon hydrogen production from integrated hydrocarbon reforming and water electrolysis for oil and gas exporting countries. Sustain. Energy Technol. Assess. 2024, 61, 103598.

[14]

Angikath, F.; Abdulrahman, F.; Yousry, A.; Das, R.; Saxena, S.; Behar, O.; Alhamed, H.; Altmann, T.; Dally, B.; Sarathy, S. M. Technoeconomic assessment of hydrogen production from natural gas pyrolysis in molten bubble column reactors. Int. J. Hydrogen Energy 2024, 49, 246–262.

[15]

Zhang, H. G.; Wang, Y. L.; Li, X. M.; Deng, K.; Yu, H. J.; Xu, Y.; Wang, H. J.; Wang, Z. Q.; Wang, L. Electrocatalytic upcycling of polyethylene terephthalate plastic to formic acid coupled with energy-saving hydrogen production over hierarchical Pd-doped NiTe nanoarrays. Appl. Catal. B Environ. 2024, 340, 123236.

[16]

Hou, X. J.; Li, D. T.; Hou, K. M.; Ye, X. H.; Suo, G. Q.; Xie, L. S.; Shu, Q.; Cao, Q. H.; Bai, J. Investigation on environmental stability and hydrolytic hydrogen production behavior of Mg30La alloy modified by activated carbon/expandable graphite. Int. J. Hydrogen Energy 2024, 49, 1145–1160.

[17]

Chu, H. Q.; Hong, R.; Dong, W. L.; Zhang, H. F.; Ma, X. Y.; Chen, L. F. Recent advances in soot formation mechanisms: Oxidation and oxidation-induced fragmentation. Fuel 2024, 371, 132046.

[18]

Matsumoto, H.; Sakai, T.; Okuyama, Y. Proton-conducting oxide and applications to hydrogen energy devices. Pure. Appl. Chem. 2012, 85, 427–435.

[19]

Chu, H. Q.; Feng, S. J.; Hong, R.; Ma, X. Y.; Qiao, F.; Chen, L. F. Effects of ammonia addition on soot formation in hydrocarbon fuels combustion: Challenges and prospects. Fuel 2024, 360, 130569.

[20]

Mou, Z.; Meng, T. T.; Li, J. C.; Wang, Y. H.; Wang, X. P.; Guo, H. Y.; Meng, W.; Zhang, K. J. Significantly enhanced photocatalytic hydrogen production performance of MoS2/CNTs/CdS with carbon nanotubes as the charge mediators. Int. J. Hydrogen Energy 2024, 51, 748–757.

[21]

Liu, Z. L.; Xu, N.; Yu, X. Y.; Yang, C. H.; Chu, H. Q. Preparation of superhydrophobic coatings with excellent mechanical and chemical stability by one-step spraying method with selected fluorine-free modifiers. Appl. Surf. Sci. 2024, 642, 158635.

[22]

Matin, N. S.; Flanagan, W. P. Environmental performance of nonthermal plasma dry and conventional steam reforming of methane for hydrogen production: Application of life cycle assessment methodology. Int. J. Hydrogen Energy 2024, 49, 1405–1413.

[23]

Chu, H. Q.; Han, W. W.; Cao, W. J.; Gu, M. Y.; Xu, G. J. Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame. Energy 2019, 166, 392–400.

[24]

Lo, Y. P.; Prabu, S.; Chang, M. B.; Chiang, K. Y. Hydrogen production and pollutants emission characteristics by co-gasified of paper-mill sludge and automobile shredder residues in a commercial scale fluidized bed gasifier. Int. J. Hydrogen Energy 2024, 52, 46–57.

[25]

Chu, H. Q.; Ya, Y. C.; Nie, X. K.; Qiao, F.; E, J. Q. Effects of adding cyclohexane, n-hexane, ethanol, and 2,5-dimethylfuran to fuel on soot formation in laminar coflow n-heptane/iso-octane diffusion flame. Combust. Flame 2021, 225, 120–135.

[26]

Gautam, R.; Ress, N. V.; Wilckens, R. S.; Ghosh, U. K. Hydrogen production in microbial electrolysis cell and reactor digestate valorization for biochar-a noble attempt towards circular economy. Int. J. Hydrogen Energy 2024, 52, 649–668.

[27]

Yang, M. M.; Bao, W. W.; Zhang, J. J.; Ai, T. T.; Han, J.; Li, Y.; Liu, J. Y.; Zhang, P. F.; Feng, L. L. Molybdenum/selenium based heterostructure catalyst for efficient hydrogen evolution: Effects of ionic dissolution and repolymerization on catalytic performance. J. Colloid Interface Sci. 2024, 658, 32–42.

[28]

Kenez, M. C.; Dincer, I. Development and assessment of an offshore-based integrated hydrogen production and liquefaction system. Appl. Therm. Eng. 2024, 236, 121574.

[29]

Sikiru, S.; Oladosu, T. L.; Amosa, T. I.; Olutoki, J. O.; Ansari, M. N. M.; Abioye, K. J.; Rehman, Z. U.; Soleimani, H. Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. Int. J. Hydrogen Energy 2024, 56, 1152–1182.

[30]

Kumaravel, S.; Thiripuranthagan, S.; Kumaravel, S.; Dura, M.; Erusappan, E. Highly efficient catalytic hydrogenation of biomass-derived levulinic acid to valeric acid over Ru/W/Al-SBA-15 catalysts. Waste Biomass. Valor. 2024, 15, 391–404.

[31]

Qiao, F.; Qian, S.; Liu, W. J.; Zhou, T. H.; Yang, J.; Zhao, J. K.; Yuan, J. R. Cu2O/Cu2S microstructure regulation towards high efficiency photocatalytic hydrogen production and its theoretical mechanism analysis. CrystEngComm 2023, 25, 4939–4945.

[32]

Qiao, F.; Sun, K. Y.; Liu, W. J.; Xie, Y. Chu, H. Q. Bandgap modulation of ZnO/ZnS heterostructures through ion exchange and their efficient transport properties. Vacuum 2022, 196, 110788.

[33]

Qiao, F.; Chu, H. Q.; Xie, Y.; Weng, Z. K. Recent progress of transparent conductive electrodes in the construction of efficient flexible organic solar cells. Int. J. Energy Res. 2022, 46, 4071–4087.

[34]

Qiao, F.; Sun, K. Y.; Chu, H. Q.; Wang, J. F.; Xie, Y.; Chen, L. P.; Yan, T. T. Design strategies of ZnO heterojunction arrays towards effective photovoltaic applications. Battery Energy 2022, 1, 20210008.

[35]

Qiao, F.; Liu, W. J.; Yang, J.; Yuan, J. R.; Sun, K. Y.; Liu, P. F. Hydrogen production performance and theoretical mechanism analysis of chain-like ZnO/ZnS heterojunction. Int. J. Hydrogen Energy 2023, 48, 953–963.

[36]

John, G.; Priyadarshini, S.; Babu, A.; Mohan, H.; Oh, B. T.; Navaneethan, M.; Jesuraj, P. J. Unleashing the room temperature boronization: Blooming of Ni-ZIF nanobuds for efficient photo/electro catalysis of water. Chemosphere 2024, 346, 140574.

[37]

Meng, S. Y.; Li, G.; Wang, P.; He, M.; Sun, X. H.; Li, Z. X. Rare earth-based MOFs for photo/electrocatalysis. Mater. Chem. Front. 2023, 7, 806–827.

[38]

Zeng, Q. R.; Jia, Z. A.; Liu, X.; Xiu, B. W.; Cheng, J. P. Multi-interface polarization engineering constructed 1T-2H MoS2 QDs/Y-NaBi(MoO4)2 multiple heterostructure for high-efficient piezoelectric-photoelectrocatalysis PDE-5i degradation. Appl. Catal. B Environ. 2023, 327, 122460.

[39]

Chen, L.; Ren, J. T.; Yuan, Z. Y. Enabling internal electric fields to enhance energy and environmental catalysis. Adv. Energy Mater. 2023, 13, 2203720.

[40]

He, Z. K.; Lu, Y. X.; Zhao, J. H.; Zhao, J. J.; Gao, Z. D.; Song, Y. Y. Engineering carrier density at TiO2 nanotube metasurface with hole reservoir for enhanced photo-electrocatalysis. Appl. Surf. Sci. 2023, 613, 155974.

[41]

Khan, H.; Ahmed, J.; Lofland, S. E.; Ramanujachary, K. V.; Ahmad, T. Synergistic effect of multiferroicity in GdFeO3 nanoparticles for significant hydrogen production through photo/electrocatalysis. Mater. Today Chem. 2023, 33, 101713.

[42]

Yan, C.; Liu, Y. L.; Zeng, Q. Y.; Wang, G. G.; Han, J. C. 2D nanomaterial supported single-metal atoms for heterogeneous photo/electrocatalysis. Adv. Funct. Mater. 2023, 33, 2210837.

[43]

Li, G.; Wang, P.; He, M.; Yuan, X. L.; Tang, L. L.; Li, Z. X. Cerium-based nanomaterials for photo/electrocatalysis. Sci. China Chem. 2023, 66, 2204–2220.

[44]

Liu, X. L.; Wang, H. C.; Yang, T.; Yue, X. Z.; Yi, S. S. Functions of metal-phenolic networks and polyphenol derivatives in photo(electro)catalysis. Chem. Commun. 2023, 59, 13690–13702.

[45]

Fan, C.; Dong, W. R.; Saira, Y.; Tang, Y. W.; Fu, G. T.; Lee, J. M. Rare-earth-modified metal-organic frameworks and derivatives for photo/electrocatalysis. Small 2023, 19, 2302738.

[46]

Dang, Q.; Wang, L. T.; Liu, J. Q.; Wang, D. J.; Chai, J. F.; Wu, M. H.; Tang, L. Recent progress of photoelectrocatalysis systems for wastewater treatment. J. Water Process Eng. 2023, 53, 103609.

[47]

Xue, G.; Li, Y. Q.; Du, R.; Wang, J. Y.; Hübner, R.; Gao, M.; Hu, Y. Leveraging ligand and composition effects: Morphology-tailorable Pt–Bi bimetallic aerogels for enhanced (photo-) electrocatalysis. Small 2023, 19, 2301288.

[48]

Ren, J.; Chi, H. Y.; Tan, L.; Peng, Y. K.; Li, G. C.; Li, M. M. J.; Zhao, Y. F.; Duan, X. Semi-quantitative determination of active sites in heterogeneous catalysts for photo/electrocatalysis. J. Mater. Chem. A 2023, 11, 2528–2543.

[49]

Liu, J. L.; Bi, H.; Zhang, L.; Zhou, G. Transition metal dual-atom Ni2/TiO2 catalysts for photoelectrocatalytic hydrogen evolution: A density functional theory study. Appl. Surf. Sci. 2023, 608, 155132.

[50]

Wu, P. D.; Li, L. Y.; Wang, K. P.; Li, H.; Fang, Z. Non-quantum nanostructure-enabled hot carrier generation for enhancive photoelectrocatalytic oxidation of bio-alcohol in water coupled with hydrogen evolution. Green Chem. 2023, 25, 2771–2781.

[51]

Clarizia, L.; Nadagouda, M. N.; Dionysiou, D. D. Recent advances and challenges of photoelectrochemical cells for hydrogen production. Curr. Opin. Green Sustain. Chem. 2023, 41, 100825.

[52]

Yu, F. Y.; Zhou, Y. J.; Tan, H. Q.; Li, Y. G.; Kang, Z. H. Versatile photoelectrocatalysis strategy raising up the green production of hydrogen peroxide. Adv. Energy Mater. 2023, 13, 2300119.

[53]

Huang, X. X.; Wang, H. J.; Yang, J. L.; Yue, M. F.; Wang, Y. H.; Zhang, H.; Li, J. F. Direct S–H evidence revealing the photo-electrocatalytic hydrogen evolution reaction mechanism on CdS using surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 2023, 14, 4026–4032.

[54]

Wang, M. J.; Osella, S.; Brescia, R.; Liu, Z. M.; Gallego, J.; Cattelan, M.; Crisci, M.; Agnoli, S.; Gatti, T. 2D MoS2/BiOBr van der Waals heterojunctions by liquid-phase exfoliation as photoelectrocatalysts for hydrogen evolution. Nanoscale 2023, 15, 522–531.

[55]

Dang, V. D.; Annadurai, T.; Khedulkar, A. P.; Lin, J. Y.; Adorna, J. Jr.; Yu, W. J.; Pandit, B.; Huynh, T. V.; Doong, R. A. S-scheme N-doped carbon dots anchored g-C3N4/Fe2O3 shell/core composite for photoelectrocatalytic trimethoprim degradation and water splitting. Appl. Catal. B Environ. 2023, 320, 121928.

[56]

Khalafallah, D.; Qiao, F.; Liu, C.; Wang, J.; Zhang, Y. X.; Wang, J. F.; Zhang, Q. F.; Notten, P. H. L. Heterostructured transition metal chalcogenides with strategic heterointerfaces for electrochemical energy conversion/storage. Coord. Chem. Rev. 2023, 496, 215405.

[57]

Jin, D. Y.; Qiao, F.; Zhou, Y.; Wang, J. F.; Cao, K. C.; Yang, J.; Zhao, J. K.; Zhou, L.; Li, H. T. Cu/Mo2C synthesized through Anderson-type polyoxometalates modulate interfacial water structure to achieve hydrogen evolution at high current density. Nano Res. 2024, 17, 2546–2554.

[58]

Jin, D. Y.; Qiao, F.; Chu, H. Q.; Xie, Y. Progress in electrocatalytic hydrogen evolution of transition metal alloys: Synthesis, structure, and mechanism analysis. Nanoscale 2023, 15, 7202–7226.

[59]

Qiao, F.; Xie, Y.; He, G.; Chu, H. Q.; Liu, W. J.; Chen, Z. Y. Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells. Nanoscale 2020, 12, 1269–1280.

[60]

Qiao, F.; Xie, Y. Strategies for enhancing conductivity of colloidal nanocrystals and their photoelectronic applications. J. Energy Chem. 2020, 48, 29–42.

[61]

Qiao, F.; Xie, Y.; Weng, Z. K.; Chu, H. Q. Ligand engineering of colloid quantum dots and their application in all-inorganic tandem solar cells. J. Energy Chem. 2020, 50, 230–239.

[62]

Qiao, F.; Liu, W. J.; Yang, J.; Liu, Y. Z.; Yuan, J. R. Fabrication of ZnO/CuInS2 heterojunction for boosting photocatalytic hydrogen production. Int. J. Hydrogen Energy 2024, 53, 840–847.

[63]

Qiao, F.; Chen, Z. Y.; Xie, Y.; Mao, B. D.; Zhang, D. Q.; Chu, H. Q.; Zhang, Q. L. Construction of microsphere-shaped ZnSe-AgZnInS and its charge transport property. J. Mater. Res. Technol. 2020, 9, 2230–2236.

[64]

Mao, L. H.; Zhai, B. J.; Shi, J. W.; Kang, X.; Lu, B. R.; Liu, Y. B.; Cheng, C.; Jin, H.; Lichtfouse, E.; Guo, L. J. Supercritical CH3OH-triggered isotype heterojunction and groups in g-C3N4 for enhanced photocatalytic H2 evolution. ACS Nano 2024, 18, 13939–13949.

[65]
Liu, D. J.; Zhang, C. Y.; Shi, J. W.; Shi, Y. C.; Nga, T. T. T.; Liu, M. C.; Shen, S. H.; Dong, C. L. Defect engineering simultaneously regulating exciton dissociation in carbon nitride and local electron density in Pt single atoms toward highly efficient photocatalytic hydrogen production. Small, in press, DOI: 10.1002/smll.202310289.
[66]

Ni, J. H.; Wen, Y. J.; Pan, D. L.; Bai, J.; Zhou, B. X.; Zhao, S. F.; Wang, Z.; Liu, Y. B.; Zeng, Q. Y. Light-driven simultaneous water purification and green energy production by photocatalytic fuel cell: A comprehensive review on current status, challenges, and perspectives. Chem. Eng. J. 2023, 473, 145162.

[67]

Yang, F. Y.; Wang, P. Y.; Hao, J. H.; Qu, J. F.; Cai, Y. H.; Yang, X. G.; Li, C. M.; Hu, J. D. Ultrasound-assisted piezoelectric photocatalysis: An effective strategy for enhancing hydrogen evolution from water splitting. Nano Energy 2023, 118, 108993.

[68]

Zhang, H. H.; Fu, Y.; Nguyen, H. T.; Fox, B.; Lee, J. H.; Lau, A. K. T.; Zheng, H.; Lin, H.; Ma, T. Y.; Jia, B. H. Material challenges in green hydrogen ecosystem. Coord. Chem. Rev. 2023, 494, 215272.

[69]

Guo, W. Q.; Guo, T.; Zhang, Y. Z.; Yin, L. F.; Dai, Y. R. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review. Chemosphere 2023, 339, 139486.

[70]

Zhao, Y. B.; Niu, Z. J.; Zhao, J. W.; Xue, L.; Fu, X. Z.; Long, J. L. Recent advancements in photoelectrochemical water splitting for hydrogen production. Electrochem. Energy Rev. 2023, 6, 14.

[71]

Zheng, D.; Xue, Y. F.; Wang, J.; Varbanov, P. S.; Klemeš, J. J.; Yin, C. G. Nanocatalysts in photocatalytic water splitting for green hydrogen generation: Challenges and opportunities. J. Cleaner Prod. 2023, 414, 137700.

[72]

Daghrir, R.; Drogui, P.; Robert, D. Photoelectrocatalytic technologies for environmental applications. J. Photoch. Photobio. A 2012, 238, 41–52.

[73]

Pan, Y. D.; Abazari, R.; Tahir, B.; Sanati, S.; Zheng, Y. C.; Tahir, M.; Gao, J. K. Iron-based metal-organic frameworks and their derived materials for photocatalytic and photoelectrocatalytic reactions. Coordin. Chem. Rev. 2024, 499, 215538.

[74]

Abbas, T.; Yahya, H. S. M.; Amin, N. A. S. Insights and progress on photocatalytic and photoelectrocatalytic reactor configurations and materials for CO2 reduction to solar fuels. Energy Fuels 2023, 37, 18330–18368.

[75]

Rahman, S.; Al Balushi, N. J.; Nayak, J. K.; Al-Mamun, A.; Al-Abri, M.; Al Alawi, M.; Sana, A. A review on semiconductor photocathode in bioelectrochemical systems: Mechanism, limitation, and environmental application. Mater. Today Sustain. 2023, 22, 100349.

[76]

Wang, Z. R.; Einaga, H. WO3-based materials for photocatalytic and photoelectrocatalytic selective oxidation reactions. ChemCatChem 2023, 15, e202300723.

[77]

Darsan, A. S.; Pandikumar, A. Recent research progress on metal halide perovskite based visible light active photoanode for photoelectrochemical water splitting. Mater. Sci. Semicon. Process. 2024, 174, 108203.

[78]

Lee, S.; Bae, H. S.; Choi, W. Selective control and characteristics of water oxidation and dioxygen reduction in environmental photo(electro)catalytic systems. Acc. Chem. Res. 2023, 56, 867–877.

[79]

Kumar, A.; Chang, D. W.; Baek, J. B. Current status and future of organic-inorganic hybrid perovskites for photoelectrocatalysis devices. Energy Fuels 2023, 37, 17782–17802.

[80]

Chen, K. Y.; Xu, X. H.; Mei, Q.; Huang, J. W.; Yang, G. D.; Wang, Q. Z. Porous TiWO3/SrWO4 with high titanium molar ratio for efficient photoelectrocatalytic nitrogen reduction under mild conditions. Appl. Catal. B Environ. 2024, 341, 123299.

[81]

Kim, J.; Park, C. B. Collaborative catalysis for solar biosynthesis. Trends Chem. 2023, 5, 133–146.

[82]

Tang, D. Y.; Lu, G. L.; Shen, Z. W.; Hu, Y. Z.; Yao, L.; Li, B. F.; Zhao, G. X.; Peng, B. X.; Huang, X. B. A review on photo-, electro-, and photoelectro-catalytic strategies for selective oxidation of alcohols. J. Energy Chem. 2023, 77, 80–118.

[83]

Qu, S. Y.; Wu, H.; Ng, Y. H. Clean production of hydrogen peroxide: A heterogeneous solar-driven redox process. Adv. Energy Mater. 2023, 13, 2301047.

[84]

Tong, T.; Zhang, M. M.; Chen, W. F.; Huo, X. Q.; Xu, F. H.; Yan, H. C.; Lai, C.; Wang, W. J.; Hu, S. Y.; Qin, L. et al. Recent advances in carbon-based material/semiconductor composite photoelectrocatalysts: Synthesis, improvement strategy, and organic pollutant removal. Coordin. Chem. Rev. 2024, 500, 215498.

[85]

El Ouardi, M.; El Idrissi, A.; Ahsaine, H. A.; BaQais, A.; Saadi, M.; Arab, M. Current advances on nanostructured oxide photoelectrocatalysts for water splitting: A comprehensive review. Surf. Interfaces. 2024, 45, 103850.

[86]

Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energ. Environ. Sci. 2012, 5(2), 5577–5591.

[87]

Ayodhya, D. Semiconductors-based Z-scheme materials for photoelectrochemical water splitting: A review. Electrochim. Acta 2023, 448, 142118.

[88]

Kaikhosravi, M.; Hadadzadeh, H.; Farrokhpour, H.; Salimi, A.; Mohtasham, H.; Foelske, A.; Sauer, M. A combined experimental and theoretical study of RuO2/TiO2 heterostructures as a photoelectrocatalyst for hydrogen evolution. Dalton Trans. 2023, 52, 3472–3481.

[89]

Bresciani, L.; Stülp, S. Electrochemical deposition of Pt and Pd on TiO2 nanotubes for application in the photoelectrocatalytic conversion of biomethane and biogas for hydrogen generation. Electrocatalysis 2024, 15, 70–86.

[90]

Mehtab, A.; Ali, S. A.; Ingole, P. P.; Mao, Y. B.; Alshehri, S. M.; Ahmad, T. MoS2 nanoflower-deposited g-C3N4 nanosheet 2D/2D heterojunction for efficient photo/electrocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2023, 6, 12003–12012.

[91]

Thamilselvan, A.; Dang, V. D.; Doong, R. A. Ni–Co bimetallic decorated dodecahedral ZIF as an efficient catalyst for photoelectrochemical degradation of sulfamethoxazole coupled with hydrogen production. Sci. Total Environ. 2023, 873, 162208.

[92]

Wang, X.; Wu, K. L.; Cao, W.; Rui, K.; Wang, W. C.; Zhu, R. X.; Zhu, J. X.; Yan, Z. P. Z-scheme strategy in polymeric graphitic C3N5/CdS core-shell heterojunction drives long-lived carriers separation for robust visible-light hydrogen production. Adv. Mater. Interfaces 2023, 10, 2201627.

[93]

Kaur, M.; Faizan, M.; Song, H. Plasmonic titanium nitride based ammonia synthesis by photo-electrocatalytic reduction of nitrogen. Chem. Eng. J. 2023, 474, 145963.

[94]

Dong, Y. W.; Zhai, X. J.; Wu, Y.; Zhou, Y. N.; Li, Y. C.; Nan, J.; Wang, S. T.; Chai, Y. M.; Dong, B. Construction of n-type homogeneous to improve interfacial carrier transfer for enhanced photoelectrocatalytic hydrolysis. J. Colloid Interface Sci. 2024, 658, 258–266.

[95]

She, G. W.; Ma, J. X.; Hao, X.; Ru, C. Z.; Zhang, H. Y.; Mu, L. X.; Qi, X. P.; Shi, W. S. Strategies for reducing the overpotential of one-dimensional Si nanostructured photoelectrodes for solar hydrogen production. EES Catal. 2023, 1, 392–412.

[96]

Roy, S.; Darabdhara, J.; Ahmaruzzaman, M. Sustainable degradation of pollutants, generation of electricity and hydrogen evolution via photocatalytic fuel cells: An inclusive review. Environ. Res. 2023, 236, 116702.

[97]

Zhou, Y. F.; Chai, Y. Z.; Sun, H. B.; Li, X. Y.; Liu, X. W.; Liang, Y. S.; Gong, X. M.; Wu, Z. B.; Liu, C.; Qin, P. F. Design strategies and mechanisms of g-C3N4-based photoanodes for photoelectrocatalytic degradation of organic pollutants in water. J. Environ. Manage. 2023, 344, 118545.

[98]

Das, S.; Sharma, U.; Mukherjee, B.; Sasikala Devi, A. A.; Velusamy, J. Polygonal gold nanocrystal induced efficient phase transition in 2D-MoS2 for enhancing photo-electrocatalytic hydrogen generation. Nanotechnology 2023, 34, 145202.

[99]

Wu, H. Z.; Hu, Z. Z.; Liang, R. H.; Nkwachukwu, O. V.; Arotiba, O. A.; Zhou, M. H. Novel Bi2Sn2O7 quantum dots/TiO2 nanotube arrays S-scheme heterojunction for enhanced photoelectrocatalytic degradation of sulfamethazine. Appl. Catal. B Environ. 2023, 321, 122053.

[100]

Fu, W. L.; Tan, L. L.; Wang, P. P. Chiral inorganic nanomaterials for photo(electro)catalytic conversion. ACS Nano 2023, 17, 16326–16347.

[101]

Xie, J. L.; Wang, S. X.; Lu, T. M.; Yang, S.; Zou, L.; Ren, J.; Lu, X. Y.; Huang, J.; Huang, C.; Yang, P. P. Evaluating high temperature photoelectrocatalysis of TiO2 model photoanode. J. Colloid Interface Sci. 2023, 645, 765–774.

[102]

Liu, X. H.; He, Y.; Li, Z.; Cheng, A. H.; Song, Z. Q.; Yu, Z. X.; Chai, S. N.; Cheng, C.; He, C. Size transformation of Au nanoclusters for enhanced photocatalytic hydrogen generation: Interaction behavior at nanocluster/semiconductor interface. J. Colloid Interface Sci. 2023, 651, 368–375.

[103]

Ali, M.; Pervaiz, E.; Sikandar, U.; Khan, Y. A review on the recent developments in zirconium and carbon-based catalysts for photoelectrochemical water-splitting. Int. J. Hydrogen Energy 2021, 46, 18257–18283.

[104]

Kumar, D.; Abraham, J. E.; Varghese, M.; George, J.; Balachandran, M.; Cherusseri, J. Nanocarbon assisted green hydrogen production: Development and recent trends. Int. J. Hydrogen Energy 2024, 50, 118–141.

[105]

Khosravi, M.; Mohammadi, M. R. Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. Photosynth. Res. 2022, 154, 329–352.

[106]

Joseph, N.; Shafi, P. M.; Bose, A. C. Recent advances in 2D-MoS2 and its composite nanostructures for supercapacitor electrode application. Energy Fuels 2020, 34, 6558–6597.

[107]

Fabre, B.; Falaise, C.; Cadot, E. Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: Recent advances and prospects. ACS Catal. 2022, 12, 12055–12091.

[108]

Fawaz, M.; Bahadur, R.; Dharmarajan, N. P.; Yang, J. H.; Sathish, C. I.; Sadanandan, A. M.; Perumalsamy, V.; Singh, G.; Guan, X. W.; Kumar, P. et al. Emerging trends of carbon nitrides and their hybrids for photo-/electro-chemical energy applications. Carbon 2023, 214, 118345.

[109]

Li, S. J.; Zhang, L. M.; Zhao, W. Q.; Yuan, S. H.; Yang, L.; Chen, X. Q.; Ge, P.; Sun, W.; Ji, X. B. Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Storage Mater. 2020, 32, 477–496.

[110]

Pervaiz, E.; Ali, M.; Abbasi, M. A.; Noor, T.; Said, Z.; Alawadhi, H. Unfolding essence of nanoscience for improved water splitting hydrogen generation in the light of newly emergent nanocatalysts. Int. J. Hydrogen Energy 2022, 47, 26915–26955.

[111]

Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

[112]

Kulkarni, R.; Lingamdinne, L. P.; Karri, R. R.; Momin, Z. H.; Koduru, J. R.; Chang, Y. Y. Catalytic efficiency of LDH@carbonaceous hybrid nanocomposites towards water splitting mechanism: Impact of plasma and its significance on HER and OER activity. Coordin. Chem. Rev. 2023, 497, 215460.

[113]

Liu, W. J.; Qiao, F.; Yang, J.; Yuan, J. R.; Xie, Y.; Wang, T.; Hu, J. Z.; Zheng, J. H.; Ren, R.; Kang, X. M. et al. Cobalt disulfide/carbon nanofibers with mesoporous heterostructure and excellent hydrophilicity for high energy density asymmetric supercapacitor. Nano Res. 2023, 16, 10401–10411.

[114]

Zhou, Z. Y.; Xie, Y. N.; Zhu, W. Z.; Zhao, H. Y.; Yang, N. J.; Zhao, G. H. Selective photoelectrocatalytic tuning of benzyl alcohol to benzaldehyde for enhanced hydrogen production. Appl. Catal. B Environ. 2021, 286, 119868.

[115]

Liu, Y. X.; Sun, Z. X.; Hu, Y. H. Bimetallic cocatalysts for photocatalytic hydrogen production from water. Chem. Eng. J. 2021, 409, 128250.

[116]

Kim, S.; Han, D. S.; Park, H. Reduced titania nanorods and Ni-Mo-S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination. Appl. Catal. B Environ. 2021, 284, 119745.

[117]

Liu, C.; Fu, D.; Li, H. Behaviour of multi-component mixtures of tetracyclines when degraded by photoelectrocatalytic and electrocatalytic technologies. Environ. Technol. 2012, 33(7), 791–799.

[118]

Sun, J. Y.; Maimaiti, H.; Xu, B.; Feng, L. R.; Bao, J. Z.; Zhao, X. W. Photoelectrocatalytic degradation of wastewater and simultaneous hydrogen production on copper nanorod-supported coal-based N-carbon dot composite nanocatalysts. Appl. Surf. Sci. 2022, 585, 152701.

[119]

Miao, Y. C.; Shao, M. F. Photoelectrocatalysis for high-value-added chemicals production. Chin. J. Catal. 2022, 43, 595–610.

[120]

Zhang, Y. Z.; Dai, Y. R.; Li, H. H.; Yin, L. F.; Hoffmann, M. R. Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production. Commun. Mater. 2020, 1, 66.

[121]

Ye, S.; Feng, W. H.; Li, J. J.; Zhong, H. Y.; Weng, J. Y.; Li, H. Assessing the role of sulfite in photoelectrocatalytic oxidation of glucose on Pt/TiO2 for hydrogen production. J. Electroanal. Chem. 2022, 927, 116975.

[122]

Zhou, C. H.; Li, J. H.; Wang, J. C.; Xie, C. Y.; Zhang, Y.; Li, L.; Zhou, T. S.; Bai, J.; Zhu, H.; Zhou, B. X. Efficient H2 production and TN removal for urine disposal using a novel photoelectrocatalytic system of Co3O4/BiVO4-MoNiCuO x /Cu. Appl. Catal. B Environ. 2023, 324, 122229.

[123]

Liu, Y.; Huang, D. L.; Cheng, M.; Liu, Z. F.; Lai, C.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Qin, L.; Shao, B. B. et al. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coordin. Chem. Rev. 2020, 409, 213220.

[124]

Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. S. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11(7), 595–598.

[125]

Liu, Y. H.; Zheng, X. L.; Yang, Y. J.; Li, J.; Liu, W. F.; Shen, Y. J.; Tian, X. L. Photocatalytic hydrogen evolution using ternary-metal-sulfide/TiO2 heterojunction photocatalysts. ChemCatChem 2022, 14, e202101439.

[126]

Chen, X. Y.; Sun, H. Z.; Kuo, D. H.; Abdeta, A. B.; Zelekew, O. A.; Guo, Y. B.; Zhang, J. B.; Yuan, Z. H.; Lin, J. G. Spherical nanoflower-like bimetallic (Mo,Ni)(S,O)3– x sulfo-oxide catalysts for efficient hydrogen evolution under visible light. Appl. Catal. B Environ. 2021, 287, 119992.

[127]

Ma, X. H.; Liu, Y. N.; Wang, Y. P.; Jin, Z. L. Amorphous CoS x Growth on CaTiO3 nanocubes formed S-scheme heterojunction for photocatalytic hydrogen production. Energy Fuels 2021, 35, 6231–6239.

[128]

Zhang, N.; Xing, Z. P.; Li, Z. Z.; Zhou, W. Sulfur vacancy engineering of metal sulfide photocatalysts for solar energy conversion. Chem Catal. 2023, 3, 100375.

[129]

Huang, D. L.; Wen, M.; Zhou, C. Y.; Li, Z. H.; Cheng, M.; Chen, S.; Xue, W. J.; Lei, L.; Yang, Y.; Xiong, W. P. et al. Zn x Cd1– x S based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction. Appl. Catal. B Environ. 2020, 267, 118651.

[130]

Imran, M.; Yousaf, A. B.; Farooq, M.; Kasak, P. Enhancement of visible light-driven hydrogen production over zinc cadmium sulfide nanoparticles anchored on BiVO4 nanorods. Int. J. Hydrogen Energy 2022, 47, 8327–8337.

[131]

Pan, L. K.; Mei, H.; Liu, H. X.; Pan, H. X.; Zhao, X.; Jin, Z. P.; Zhu, G. Q. High-efficiency carrier separation heterostructure improve the photocatalytic hydrogen production of sulfide. J. Alloys Compd. 2020, 817, 153242.

[132]

Zhang, M.; Chen, X. J.; Jiang, X. Y.; Wang, J.; Xu, L. Y.; Qiu, J. H.; Lu, W. R.; Chen, D. L.; Li, Z. Q. Activate Fe3S4 nanorods by Ni doping for efficient dye-sensitized photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2021, 13, 14198–14206.

[133]

Zhang, Y.; Liao, W. Y.; Zhang, G. Q. A general strategy for constructing transition metal Oxide/CeO2 heterostructure with oxygen vacancies toward hydrogen evolution reaction and oxygen evolution reaction. J. Power Sources 2021, 512, 230514.

[134]

Liu, H. Z.; Xia, G. L.; Zhang, R. R.; Jiang, P.; Chen, J. T.; Chen, Q. W. MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Adv. 2017, 7, 3686–3694.

[135]

Liu, J. L.; Zheng, Y.; Jiao, Y.; Wang, Z. Y.; Lu, Z. G.; Vasileff, A.; Qiao, S. Z. NiO as a bifunctional promoter for RuO2 toward superior overall water splitting. Small 2018, 14, 1704073.

[136]

Adamson, W.; Bo, X.; Li, Y. B.; Suryanto, B. H. R.; Chen, X. J.; Zhao, C. Co-Fe binary metal oxide electrocatalyst with synergistic interface structures for efficient overall water splitting. Catal. Today 2020, 351, 44–49.

[137]

Yang, W. D.; Xiang, J.; Zhao, R. D.; Loy, S.; Li, M. T.; Ma, D. M.; Li, J.; Wu, F. F. Nanoengineering of ZnCo2O4@CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceram. Int. 2023, 49, 4422–4434.

[138]

Liu, J. C.; Xu, G. R.; Zhen, H. R.; Zhai, H.; Li, C. P.; Bai, J. Directed self-assembled pathways of 3D rose-shaped PtNi@CeO2 electrocatalyst for enhanced hydrogen evolution reaction. J. Alloys Compd. 2023, 931, 167379.

[139]

Yang, Y. X.; Zhang, L.; Guo, F. Y.; Wang, D. X.; Guo, X. W.; Zhou, X. Z.; Sun, D. F.; Yang, Z. W.; Lei, Z. Q. A robust octahedral NiCoO x S y core-shell structure decorated with NiWO4 nanoparticles for enhanced electrocatalytic hydrogen evolution reaction. Electrochim. Acta 2023, 439, 141618.

[140]

Wei, X. J.; Zhang, Y. H.; He, H. C.; Gao, D.; Hu, J. R.; Peng, H. R.; Peng, L.; Xiao, S. H.; Xiao, P. Carbon-incorporated NiO/Co3O4 concave surface microcubes derived from a MOF precursor for overall water splitting. Chem. Commun. 2019, 55, 6515–6518.

[141]

Hariri, A.; Gilani, N.; Pasikhani, J. V. Promoting the photo-induced charge separation and photoelectrocatalytic hydrogen generation: Z-scheme configuration of WO3 quantum nanodots-decorated immobilized Ti/TiO2 nanorods. J. Alloys Compd. 2021, 871, 159528.

[142]

Yilmaz, P.; Lacerda, A. M.; Larrosa, I.; Dunn, S. Photoelectrocatalysis of rhodamine B and solar hydrogen production by TiO2 and Pd/TiO2 catalyst systems. Electrochim. Acta 2017, 231, 641–649.

[143]

Iervolino, G.; Tantis, I.; Sygellou, L.; Vaiano, V.; Sannino, D.; Lianos, P. Photocurrent increase by metal modification of Fe2O3 photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances. Appl. Surf. Sci. 2017, 400, 176–183.

[144]

Rabell, G. O.; Cruz, M. R. A.; Juárez-Ramírez, I. Hydrogen production of ZnO and ZnO/Ag films by photocatalysis and photoelectrocatalysis. Mater. Sci. Semicond. Process. 2021, 134, 105985.

[145]

Zhang, M. M.; Xue, H.; Han, X. P.; Zhang, Z. J.; Jiang, Y.; Deng, Y. D.; Hu, W. B. Accelerate charge separation in Cu2O/MoO2 photocathode for photoelectrocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 650, 284–293.

[146]

Meerbach, C.; Klemmed, B.; Spittel, D.; Bauer, C.; Park, Y. J.; Hübner, R.; Jeong, H. Y.; Erb, D.; Shin, H. S.; Lesnyak, V. et al. General colloidal synthesis of transition-metal disulfide nanomaterials as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 13148–13155.

[147]

Rahman, G.; Chae, S. Y.; Joo, O. S. Efficient hydrogen evolution performance of phase-pure NiS electrocatalysts grown on fluorine-doped tin oxide-coated glass by facile chemical bath deposition. Int. J. Hydrogen Energy 2018, 43, 13022–13031.

[148]

Zhou, Q.; Zhao, G. Q.; Rui, K.; Chen, Y. P.; Xu, X.; Dou, S. X.; Sun, W. P. Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale 2019, 11, 717–724.

[149]

Ge, J. M.; Zhang, D. B.; Qin, Y.; Dou, T.; Jiang, M. H.; Zhang, F. Z.; Lei, X. D. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Appl. Catal. B Environ. 2021, 298, 120557.

[150]

Zheng, M.; Chen, Q. Q.; Zhong, Q. Flower-like 1T-MoS2/NiCo2S4 on a carbon cloth substrate as an efficient electrocatalyst for the hydrogen evolution reaction. Dalton Trans. 2021, 50, 13320–13328.

[151]

Yang, J. Y.; Chai, C. L.; Jiang, C.; Liu, L.; Xi, J. Y. MoS2-CoS2 heteronanosheet arrays coated on porous carbon microtube textile for overall water splitting. J. Power Sources 2021, 514, 230580.

[152]

Cao, P. F.; Peng, J.; Li, J. Q.; Zhai, M. L. Highly conductive carbon black supported amorphous molybdenum disulfide for efficient hydrogen evolution reaction. J. Power Sources 2017, 347, 210–219.

[153]

Zhao, G. Q.; Lin, Y.; Rui, K.; Zhou, Q.; Chen, Y. P.; Dou, S. X.; Sun, W. P. Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale 2018, 10, 19074–19081.

[154]

Wang, S. B.; Wang, Y.; Zhang, S. L.; Zang, S. Q.; Lou, X. W. Supporting ultrathin ZnIn2S4 nanosheets on Co/N-Doped graphitic carbon nanocages for efficient photocatalytic H2 generation. Adv. Mater. 2019, 31, 1903404.

[155]

Wang, Z. Y.; Su, B.; Xu, J. L.; Hou, Y. D.; Ding, Z. X. Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution. Int. J. Hydrogen Energy 2020, 45, 4113–4121.

[156]

Irshad, A.; Munichandraiah, N. Electrodeposited nickel-cobalt-sulfide catalyst for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 19746–19755.

[157]

Begildayeva, T.; Chinnadurai, D.; Lee, S. J.; Choi, M. Y. Multifunctional photo-electrocatalysts of copper sulfides prepared via pulsed laser ablation in liquid: Phase formation kinetics and photo-electrocatalytic activity. Int. J. Energy Res. 2022, 46, 8201–8217.

[158]

Gao, X. Q.; Qi, J.; Wan, S. H.; Zhang, W.; Wang, Q.; Cao, R. Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution. Small 2018, 14, 1803361.

[159]

Xiao, W. C.; Li, Y.; Elgendy, A.; Duran, E. C.; Buckingham, M. A.; Spencer, B. F.; Han, B.; Alam, F.; Zhong, X. L.; Cartmell, S. H. et al. Synthesis of high entropy and entropy-stabilized metal sulfides and their evaluation as hydrogen evolution electrocatalysts. Chem. Mater. 2023, 35, 7904–7914.

[160]

Zhou, K. L.; Han, C. B.; Wang, Z. L.; Ke, X. X.; Wang, C. H.; Jin, Y. H.; Zhang, Q. Q.; Liu, J. B.; Wang, H.; Yan, H. Atomically dispersed platinum modulated by sulfide as an efficient electrocatalyst for hydrogen evolution reaction. Adv. Sci. 2021, 8, 2100347.

[161]

Lai, J. P.; Huang, B. L.; Chao, Y. G.; Chen, X.; Guo, S. J. Strongly coupled nickel-cobalt nitrides/carbon hybrid nanocages with Pt-like activity for hydrogen evolution catalysis. Adv. Mater. 2019, 31, 1805541.

[162]

Jiang, M.; Li, Y. J.; Lu, Z. Y.; Sun, X. M.; Duan, X. Binary nickel-iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorg. Chem. Front. 2016, 3, 630–634.

[163]

Wang, C. D.; Sun, Y. F.; Tian, E. L.; Fu, D. M.; Zhang, M.; Zhao, X. J.; Ye, W. C. Easy access to trace-loading of Pt on inert Ni3N nanoparticles with significantly improved hydrogen evolution activity at entire pH values. Electrochim. Acta 2019, 320, 134597.

[164]

Yu, M. H.; Zhao, S. B.; Feng, H. B.; Hu, L.; Zhang, X. Y.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Engineering thin MoS2 Nanosheets on TiN nanorods: Advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2017, 2, 1862–1868.

[165]

Murthy, A. P.; Govindarajan, D.; Theerthagiri, J.; Madhavan, J.; Parasuraman, K. Metal-doped molybdenum nitride films for enhanced hydrogen evolution in near-neutral strongly buffered aerobic media. Electrochim. Acta 2018, 283, 1525–1533.

[166]

Dai, X. P.; Du, K. L.; Li, Z. Z.; Sun, H.; Yang, Y.; Zhang, X.; Li, X. S.; Wang, H. Highly efficient hydrogen evolution catalysis by MoS2-MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids. Chem. Eng. Sci. 2015, 134, 572–580.

[167]

Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

[168]

Mehtab, A.; Alshehri, S. M.; Ahmad, T. Photocatalytic and photoelectrocatalytic water splitting by porous g-C3N4 nanosheets for hydrogen generation. ACS Appl. Nano Mater. 2022, 5, 12656–12665.

[169]

Hu, H. S.; Zhang, Z. R.; Zhang, Y. W.; Thomas, T.; Du, H. Y.; Huang, K. K.; Attfield, J. P.; Yang, M. H. An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production. Energy Environ. Sci. 2023, 16, 4584–4592.

[170]

Zhang, N.; Zhang, Q.; Xu, C.; Li, Y.; Zhang, J. Y.; Wu, L.; Liu, Y. F.; Fang, Y. Z.; Liu, Z. F. Optional construction of Cu2O@Fe2O3@CC architecture as a robust multifunctional photoelectronic catalyst for overall water splitting and CO2 reduction. Chem. Eng. J. 2021, 426, 131192.

[171]

Mohanta, D.; Barman, K.; Jasimuddin, S.; Ahmaruzzaman, M. Encapsulating band gap engineered CoSnO3 mixed metal oxide nanocomposite in rGO matrix: A novel catalyst towards LED light induced photoelectrocatalytic water oxidation at neutral pH. J. Electroanal. Chem. 2021, 880, 114830.

[172]

Wang, Y.; Jin, L.; Hua, S. Y.; Zhao, Z.; Xiao, Z. J.; Qu, C. Y.; Huang, J. Y.; Huang, G. S.; Ke, X. Y.; Lu, Z. H. et al. Hierarchically nanostructured nitrogen-doped porous carbon multi-layer confining Fe particles for high performance hydrogen evolution. J. Materiomics 2023, 9, 1113–1121.

[173]

Louis, J.; Padmanabhan, N. T.; Jayaraj, M. K.; John, H. Exploring enhanced interfacial charge separation in ZnO/reduced graphene oxide hybrids on alkaline photoelectrochemical water splitting and photocatalytic pollutant degradation. Mater. Res. Bull. 2024, 169, 112542.

[174]

Pariiska, O.; Mazur, D.; Kurys, Y.; Socha, R.; Koshechko, V.; Pokhodenko, V. Poly-5-aminoindole and graphene-like materials derived bifunctional Co–N–C electrocatalysts for oxygen reduction and hydrogen evolution. J. Solid State Electrochem. 2021, 25, 2309–2319.

[175]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

[176]

Song, Y.; He, H. Y.; Zhao, Y. Y.; Li, Y.; Wu, M. Z.; Li, J.; Lu, X. M.; Zhao, L. S.; Wei, L. G. Effective construction of a CuCo MOF@graphene functional electrocatalyst for hydrogen evolution reaction. Dalton Trans. 2023, 52, 12695–12703.

[177]

Cheng, Q. F.; Xu, J.; Wang, T.; Fan, L.; Ma, R. F.; Yu, X. Z.; Zhu, J.; Xu, Z.; Lu, B. A. Double quantum dots decorated 3D graphene flowers for highly efficient photoelectrocatalytic hydrogen production. Appl. Surf. Sci. 2017, 422, 528–535.

[178]

Wang, Y. X.; Sun, J. P.; Han, H. T.; Meng, X. C.; Li, Z. Z. Nitrogen deficient porous C3N4 on carbon cloth as photoanode with enhanced photoelectrocatalytic activity in hydrogen production. Int. J. Hydrogen Energy 2023, 48, 29942–29951.

[179]

Wang, D. C.; Chen, R.; Zhu, X.; Ye, D. D.; Yang, Y.; Yu, Y. X.; Li, J. W.; Liu, Y. X.; Zhao, H.; Liao, Q. Synergetic photo-thermo catalytic hydrogen production by carbon materials. J. Phys. Chem. Lett. 2022, 13, 1602–1608.

[180]

Aboubakr, A. E. A.; Hussien, M. K.; Sabbah, A.; Hassan, A. E.; Elsayed, M. H.; Wen, Z. H.; Chen, K. H.; Hung, C. H. Direct Z-scheme heterostructure of in situ planted ZnO nanorods on g-C3N4 thin sheets sprayed on TiO2 layer: A strategy for ternary-photoanode engineering toward enhanced photoelectrochemical water splitting. ACS Appl. Energy Mater. 2024, 7, 906–918.

[181]

Li, F.; Zhao, W.; Leung, D. Y. C. Enhanced photoelectrocatalytic hydrogen production via Bi/BiVO4 photoanode under visible light irradiation. Appl. Catal. B Environ. 2019, 258, 117954.

[182]

Vensaus, P.; Liang, Y. C.; Herrera, F. C.; Soler-Illia, G. J. A. A.; Lingenfelder. M. Synergistic enhancement of photo-assisted water splitting by mesoporous TiO2/NiFe LDH composite nanomaterials. Int. J. Hydrogen Energy 2024, 59, 89–96.

[183]

Wu, Z. Z.; Fei, H.; Wang, D. Z. MoS2/Cu2O nanohybrid as a highly efficient catalyst for the photoelectrocatalytic hydrogen generation. Mater. Lett. 2019, 256, 126622.

[184]

Wu, Z. Z.; Ouyang, M.; Wang, D. Z. Construction of WS2/MoSe2 heterojunction for efficient photoelectrocatalytic hydrogen evolution. Mater. Sci. Semicond. Process. 2020, 107, 104822.

[185]

Liu, S.; Wang, N. N.; Liu, G. S.; Yang, S. M.; Li, C.; Zhou, Y.; He, H.; Chen, Y.; Thummavichaia, K.; Zhu, Y. Q. In situ synthesis of tentacle-like NiC/Mo2C/NF nanorods array with excellent hydrogen evolution reaction at high current densities. J. Colloid Interface Sci. 2024, 661, 606–613.

[186]

Shakeel, M.; Arif, M.; Yasin, G.; Li, B. S.; Khan, A. U.; Khan, F. U.; Baloch, M. K. Hollow mesoporous architecture: A high performance bi-functional photoelectrocatalyst for overall water splitting. Electrochim. Acta 2018, 268, 163–172.

[187]

Chen, C.; Zhang, J.; Xiong, X. S.; Yang, S.; Lin, J. C. High photo-electrochemical and hydrogen evolution reaction activities from 0D/2D ZnSe/(001)CuSe heterojunction catalysts constructed by ZnSe nanoparticles and {001} facets-exposed CuSe nanosheets. ACS Appl. Energy Mater. 2022, 5, 8952–8962.

[188]

Zhang, J.; Ma, H. P.; Liu, Z. F. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Appl. Catal. B Environ. 2017, 201, 84–91.

[189]

Xue, H. Y.; Meng, A.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, 14, 4173–4181.

[190]

Karuppasamy, K.; Bose, R.; Jothi, V. R.; Vikraman, D.; Jeong, Y. T.; Arunkumar, P.; Velusamy, D. B.; Maiyalagan, T.; Alfantazi, A.; Kim, H. S. High performance, 3D-hierarchical CoS2/CoSe@C nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction. J. Alloys Compd. 2020, 838, 155537.

[191]

Baidoun, R.; Liu, G. X.; Kim, D. Recent advances in the role of interfacial liquids in electrochemical reactions. Nanoscale 2024, 16, 5903–5925.

[192]

Chen, Y. J.; Wang, G. F.; Li, H. L.; Zhang, F. F.; Jiang, H. Y.; Tian, G. H. Controlled synthesis and exceptional photoelectrocatalytic properties of Bi2S3/MoS2/Bi2MoO6 ternary hetero-structured porous film. J. Colloid. Interface Sci. 2019, 555, 214–223.

[193]

Hegner, F. S.; Cardenas-Morcoso, D.; Giménez, S.; López, N.; Galan-Mascaros, J. R. Level alignment as descriptor for semiconductor/catalyst systems in water splitting: The case of hematite/cobalt hexacyanoferrate photoanodes. ChemSusChem 2017, 10, 4552–4560.

[194]

Tan, M. X.; Yu, C. Y.; Luan, Q. J.; Liu, C. B.; Dong, W. J.; Su, Y. J.; Qiao, L. J.; Gao, L.; Lu, Q. P.; Bai, Y. The Mott-Schottky heterojunction MoC@NG@ZIS with enhanced kinetic response for promoting photocatalytic hydrogen production. J. Mater. Chem. A 2022, 10, 21465–21473.

[195]

Wang, J. X.; Keller, C.; Dietrich, M.; Olli, P. E.; Gentile, P.; Pouget, S.; Okuno, H.; Boutghatin, M.; Pennec, Y.; Reita, V. et al. Porous silicon-nanowire-based electrode for the photoelectrocatalytic production of hydrogen. Sustain. Energy Fuels 2023, 7, 4864–4876.

[196]

Zhan, X. Y.; Wang, Q. S.; Wang, F. M.; Wang, Y. J.; Wang, Z. X.; Cao, J. L.; Safdar, M.; He, J. Composition-tuned ZnO/Zn x Cd1– x Te core/shell nanowires array with broad spectral absorption from UV to NIR for hydrogen generation. ACS Appl. Mater. Interfaces 2014, 6, 2878–2883.

[197]

Tian, Y. Y.; Qi, C. N.; Zhou, R. H.; Li, D.; Han, T. Photoelectrocatalytic hydrogen evolution reaction stimulated by the surface plasmon resonance effect of copper and silver surrounded with MoS2. RSC Adv. 2013, 13, 25246–25252.

[198]

Li, W. L.; Geng, H. C.; Yao, L.; Cao, K. S.; Sheng, P. T.; Cai, Q. Y. Photoelectrocatalytic hydrogen generation enabled by CdS passivated ZnCuInSe quantum dot-sensitized TiO2 decorated with Ag nanoparticles. Nanomaterials 2019, 9, 393.

[199]

Fang, H. B.; Zhang, X. H.; Wu, J. J.; Li, N.; Zheng, Y. Z.; Tao, X. Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 225, 397–405.

[200]

Wang, H. G.; Hu, L.; Zhou, H. H.; Zhang, Y. Near-infrared responsive reduced graphene oxide supported CuS: Enhanced electrocatalytic hydrogen evolution performance. Int. J. Hydrogen Energy 2021, 46, 35239–35247.

[201]

Kim, H.; Yang, B. L. A polyaniline-coated ZnS/ZnO/FTO photoelectrode for improving photocorrosion prevention and visible light absorption. New J. Chem. 2019, 43, 16699–16705.

[202]

Liu, Y. N.; Li, Q.; Lian, Z. C.; Fan, J. C.; Tao, Y.; Li, G. S.; Li, H. X. Polarization field promoted photoelectrocatalysis for synergistic environmental remediation and H2 production. Chem. Eng. J. 2022, 437, 135132.

[203]

Zhang, Y.; Hu, L.; Zhang, Y. C.; Wang, X. Z.; Wang, H. G. Snowflake-like Cu2S/MoS2/Pt heterostructure with near infrared photothermal-enhanced electrocatalytic and photoelectrocatalytic hydrogen production. Appl. Catal. B Environ. 2022, 315, 121540.

[204]

Xia, Y. Z.; Liang, R. W.; Yang, M. Q.; Zhu, S. Y.; Yan, G. Y. Construction of chemically bonded interface of organic/inorganic g-C3N4/LDH heterojunction for Z-schematic photocatalytic H2 generation. Nanomaterials 2021, 11, 2762.

[205]

Zhang, Y.; Hu, L.; Zhou, H. H.; Wang, H. G.; Zhang, Y. C. NIR photothermal-enhanced electrocatalytic and photoelectrocatalytic hydrogen evolution by polyaniline/SnS2 nanocomposites. ACS Appl. Nano Mater. 2022, 5, 391–400.

[206]

Hu, Y. G.; Bo, T. T.; Xu, R. X.; Mu, N.; Liu, Y. Y.; Zhou, W. Fe-doped SnS2 nanoflowers for magnetically-tunable photoelectrocatalytic hydrogen evolution reaction. ACS Appl. Nano Mater. 2023, 6, 19600–19610.

[207]

Xue, J. B.; Zhang, H.; Shen, Q. Q.; Zhang, W. J.; Gao, J. Q.; Li, Q.; Liu, X. G.; Jia, H. S. Enhanced photoelectrocatalytic hydrogen production performance of porous MoS2/PPy/ZnO film under visible light irradiation. Int. J. Hydrogen Energy 2021, 46, 35219–35229.

[208]

Paulraj, G.; Venkatesh, P. S.; Dharmaraj, P.; Gopalakrishnan, S.; Jeganathan, K. Stable and highly efficient MoS2/Si NWs hybrid heterostructure for photoelectrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 1793–1801.

[209]

Li, L.; Shi, H. H.; Yu, H. H.; Tan, X. R.; Wang, Y. H.; Ge, S. G.; Wang, A. Z.; Cui, K.; Zhang, L. N.; Yu, J. H. Ultrathin MoSe2 nanosheet anchored CdS-ZnO functional paper chip as a highly efficient tandem Z-scheme heterojunction photoanode for scalable photoelectrochemical water splitting. Appl. Catal. B Environ. 2021, 292, 120184.

[210]

Ren, J. T.; Chen, L.; Wang, H. Y.; Tian, W. W.; Wang, L.; Sun, M. L.; Feng, Y.; Zhai, S. X.; Yuan, Z. Y. Self-powered hydrogen production with improved energy efficiency via polysulfides redox. ACS Nano 2023, 17, 25707–25720.

[211]

Wang, H. J.; Wang, B. B.; Yu, H. J.; Deng, K.; Xu, Y.; Li, X. N.; Wang, Z. Q.; Wang, L. Bifunctional cobalt-nickel sulfide nanoflowers as electrocatalysts for concurrent energy-efficient hydrogen production and sulfur recycling. ACS Appl. Nano Mater. 2023, 6, 10863–10871.

[212]

Pecoraro, C. M.; Bellardita, M.; Loddo, V.; Virtù, D.; Di Franco, F.; Santamaria, M. Photocatalytic and photoelectrocatalytic H2 evolution combined with valuable furfural production. Appl. Catal. A Gen. 2023, 650, 118987.

[213]

Wu, Y. Q.; Boda, M. A.; Yi, Z. G. NiCo nitride/carbon nanoflakes as low-cost bifunctional electrocatalysts for carbohydrate-assisted electrolytic H2 generation. Mater. Today Energy 2022, 24, 100948.

[214]

Zhao, Y.; Ding, C. M.; Zhu, J. Qin, W.; Tao, X. P.; Fan, F. T.; Li, R. G.; Li, C. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew. Chem., Int. Ed. 2020, 59, 9653–9658.

[215]

Ben-Naim, M.; Aldridge, C. W.; Steiner, M. A.; Nielander, A. C.; Deustch, T. G.; Young, J. L.; Jaramillo, T. F. Demonstration of photoreactor platform for on-sun unassisted photoelectrochemical hydrogen generation with tandem III-V photoelectrodes. ChemCatalysis 2022, 2, 195–209.

Nano Research Energy
Cite this article:
Qiao F. Photoelectrocatalytic hydrogen production: Hydrogen production principle, performance optimization strategy, application and prospect. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120132

284

Views

87

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 09 June 2024
Revised: 12 July 2024
Accepted: 15 July 2024
Published: 08 August 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return