AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Electron/ion-conductive and flexible dual-functional copolymer enabled by EDOT and h2PDMS for optimized Li-ion batteries

Jingwei Wang1Zhaowen Bai2Zejia Zhao3Guangping Zheng4Junye Cheng1( )Guohua Chen2( )
Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 517182, China
School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
Institute of Semiconductor Manufacturing Research, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Show Author Information

Graphical Abstract

Abstract

Electron/ion-conductive flexible copolymer PEDOT-PDMS (poly(3,4-ethylenedioxythiophene)-poly(dimethylsiloxane)) was successfully developed, which not only effectively optimizes high-voltage NaLiFePO4F cathode through dripping on electrode surface but also improves high-capacity Si anode through in-situ polymerization on the surface of Si particles. Theoretical calculation and experiments indicate that π-π conjugated structure in PEDOT-PDMS molecular chains easily interacts with PF6 anions, providing electron transfer pathways and preventing HF production. Moreover, Li ions transfer through Si-O in the amorphous phase of the copolymer, and its Young’s modulus at rupture is 1.17±0.10 MPa. The in-situ TEM results directly confirm that the polymer layer provides conducting pathways and buffers the stress induced by lithiation. With the NaLiFePO4F coated cathode, the cells show good cycle stability (~100% of capacity retention after 500 cycles) and high chemical diffusion coefficient of lithium-ions (1.89×10–9 cm2·s–1 and 1.20×10–9 cm2·s–1). In the case of coated Si anode, a capacity of 1512 mAh·g–1 is retained after 1000 cycles at 0.5 C with a capacity retention of 69.8% in terms of the highest specific capacity around the 160th cycle. This work opens a new avenue for the simultaneous optimization of cathode and anode with a functional polymer.

Electronic Supplementary Material

Video
0133_ESM-Movie1.mp4
0133_ESM-Movie2.mp4
Download File(s)
0133_ESM.pdf (1.7 MB)

References

[1]

Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.

[2]

Li, Z. W.; Han, M. S.; Yu, P. L.; Lin, J. S.; Yu, J. Macroporous directed and interconnected carbon architectures endow amorphous silicon nanodots as low-strain and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 2024, 16, 98.

[3]

Su, C.; Gao, X.; Liu, K. J.; Dai, Y. H.; Dong, H. B.; Liu, Y. Y.; Zhu, J. Y.; Zhang, Q. X.; He, H. Z.; He, G. J. From lab to market: A review of commercialization and advances for binders in lithium-, zinc-, sodium-ion batteries. Nano Res. Energy 2024, 3, e9120094.

[4]

Xu, G. L.; Liu, J. Z.; Amine, R.; Chen, Z. H.; Amine, K. Selenium and selenium-sulfur chemistry for rechargeable lithium batteries: Interplay of cathode structures, electrolytes, and interfaces. ACS Energy Lett. 2017, 2, 605–614.

[5]

Wu, Y.; Ma, F.; Zhang, Z. H.; Chen, D. Q.; Yu, H. S.; Zhang, X. J.; Ding, F.; Zhang, L.; Chen, Y. F. Amorphous lithiophilic cobalt-boride@rGO interlayer for dendrite-free and highly stable lithium metal batteries. EcoEnergy 2024, 2, 299–310.

[6]

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

[7]

Shen, J.; Zhang, S. L.; Wang, H. L.; Wang, R. X.; Hu, Y. Y.; Mao, Y. Y.; Wang, R. L.; Zhang, H. H.; Du, Y. M.; Fan, Y. M. et al. Unlocking the potential of silicon anodes in lithium-ion batteries: A claw-inspired binder with synergistic interface bonding. eScience 2024, 4, 100207.

[8]
Hu, W. F.; Li, Y. Y.; Liu, J. P. Pressure-induced pre-lithiation enables high-performing Si anodes in all-solid-state batteries. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12786.
[9]

Du, F. H.; Wang, K. X.; Chen, J. S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50.

[10]

Wang, J. W.; Zhao, Z. J.; Hu, F.; Song, H. Q.; Xie, Q. R.; Wan, X. J.; Song, S. H. Highly reversible Zn metal anodes enabled by multifunctional poly zinc acrylate protective coating. Chem. Eng. J. 2023, 451, 139058.

[11]

Li, L.; Nam, J.S.; Kim, M. S.; Wang, Y. F.; Jiang, S. H.; Hou, H. Q.; Kim, I. D. Sulfur-carbon electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life lithium-sulfur batteries. Adv. Energy Mater. 2023, 13, 2302139.

[12]

Xiao, B. W.; Sun, X. L. Surface and subsurface reactions of lithium transition metal oxide cathode materials: An overview of the fundamental origins and remedying approaches. Adv. Energy Mater. 2018, 8, 1802057.

[13]

Zeng, G. F.; Sun, Q.; Horta, S.; Wang, S.; Lu, X.; Zhang, C. Y.; Li, J.; Li, J. S.; Ci, L. J.; Tian, Y. H.; Ibáñez, M.; Cabot, A. A layered Bi2Te3@PPy cathode for aqueous zinc-ion batteries: Mechanism and application in printed flexible batteries. Adv. Mater. 2023, 36, 2305128.

[14]

Zhang, F.; Xiong, P.; Guo, X.; Zhang, J. Q.; Yang, W.; Wu, W. J.; Liu, H.; Wang, G. X. A nitrogen, sulphur dual-doped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium-selenium batteries. Energy Storage Mater. 2019, 19, 251–260.

[15]

Xu, G. L.; Liu, Q.; Lau, K. K. S.; Liu, Y. Z.; Liu, X.; Gao, H.; Zhou, X. W.; Zhuang, M. H.; Ren, Y.; Li, J. D. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494.

[16]

Raza, H.; Bai, S. Y.; Cheng, J. Y.; Majumder, S.; Zhu, H.; Liu, Q.; Zheng, G. P.; Li, X. F.; Chen, G. H. Li–S batteries: Challenges, achievements and opportunities. Electrochem. Energy Rev. 2023, 6, 29.

[17]

Wang, M. J.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Miao, L. X.; Zhang, X. L.; Huang, Y. Q.; Yu, Z. B.; Qiu, J. Y. A multi-core-shell structured composite cathode material with a conductive polymer network for Li–S batteries. Chem. Commun. 2013, 49, 10263–10265.

[18]

Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.

[19]

Meng, J. W.; Chu, F. L.; Hu, J. L.; Li, C. L. Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries. Adv. Funct. Mater. 2019, 29, 1902220.

[20]

Zengin, A.; Badak, M. U.; Bilici, M.; Suludere, Z.; Aktas, N. Preparation of molecularly imprinted PDMS elastomer for selective detection of folic acid in orange juice. Appl. Surf. Sci. 2019, 471, 168–175.

[21]

Klasner, S. A.; Metto, E. C.; Roman, G. T.; Culbertson, C. T. Synthesis and characterization of a poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer for fabrication of amphiphilic surfaces on microfluidic devices. Langmuir 2009, 25, 10390–10396.

[22]

Chen, R.; Sun, K.; Zhang, Q.; Zhou, Y. L.; Li, M.; Sun, Y. Y.; Wu, Z.; Wu, Y. Y.; Li, X. L.; Xi, J. L. et al. Sequential solution polymerization of poly(3,4-ethylenedioxythiophene) using V2O5 as oxidant for flexible touch sensors. iScience 2019, 12, 66–75.

[23]

Wei, B.; Liu, J. L.; Ouyang, L. Q.; Martin, D. C. POSS-ProDOT crosslinking of PEDOT. J. Mater. Chem. B 2017, 5, 5019–5026.

[24]

Risangud, N.; Li, Z. J.; Anastasaki, A.; Wilson, P.; Kempe, K.; Haddleton, D. M. Hydrosilylation as an efficient tool for polymer synthesis and modification with methacrylates. RSC Adv. 2015, 5, 5879–5885.

[25]

Sharma, P.; Patel, D. K.; Kancharlapalli, S.; Magdassi, S.; Sasson, Y. Facile combined experimental and computational study: g-C3N4@PDMS-assisted Knoevenagel condensation reaction under phase transfer conditions. ACS Sustain. Chem. Eng. 2020, 8, 2350–2360.

[26]

Lee, S.; Gleason, K. K. Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical vapor deposition. Adv. Funct. Mater. 2015, 25, 85–93.

[27]

Kayser, L. V.; Russell, M. D.; Rodriquez, D.; Abuhamdieh, S. N.; Dhong, C.; Khan, S.; Stein, A. N.; Ramírez, J.; Lipomi, D. J. RAFT polymerization of an intrinsically stretchable water-soluble block copolymer scaffold for PEDOT. Chem. Mater. 2018, 30, 4459–4468.

[28]

Noh, J. S. Highly conductive and stretchable poly(dimethylsiloxane):Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonic acid) blends for organic interconnects. RSC Adv. 2014, 4, 1857–1863.

[29]

Klonos, P.; Sulym, I. Y.; Borysenko, M. V.; Gun'ko, V. M.; Kripotou, S.; Kyritsis, A.; Pissis, P. Interfacial interactions and complex segmental dynamics in systems based on silica-polydimethylsiloxane core-shell nanoparticles: Dielectric and thermal study. Polymer 2015, 58, 9–21.

[30]

Kayser, L. V.; Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133.

[31]

Lin, Z. Y.; Guo, X. W.; Yu, H. J. Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy 2017, 41, 646–653.

[32]

Ahn, J.; Yoon, S.; Jung, S. G.; Yim, J. H, Cho, K. Y. A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 21214–21222.

[33]

Chang, Q.; Fu, X. L.; Gao, J. C.; Zhang, Z. H.; Liu, X.; Huang, C. S.; Li, Y. L. Advanced multilayered electrode with planar building blocks structure for high-performance lithium-ion storage. Adv. Mater. 2023, 35, 2305317.

[34]

Cai, R.; Wang, Y.; Wang, J. R.; Zhang, J. F.; Yu, C. P.; Qin, Y. Q.; Cui, J. W.; Zhang, Y.; Tiwary, C. S.; Wu, Y. C. Accelerated hydrogen production on atomically thin silicon nanosheets photocatalyst with unique surface adsorption chemistry. Int. J. Hyd. Energy 2024, 51, 929–935.

[35]

Eslamisaray, M. A.; Wray, P. R.; Lee, Y.; Nelson, G. M.; Ilic, O.; Atwater, H. A.; Kortshagen, U. R. A single-step bottom-up approach for synthesis of highly uniform mie-resonant crystalline semiconductor particles at visible wavelengths. Nano Lett. 2023, 23, 1930–1937.

[36]

Kvarnström, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H. J.; Kankare, J.; Ivaska, A. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim. Acta 1999, 44, 2739–2750.

[37]

Wang, M. S.; Wang, G. L.; Wang, S.; Zhang, J.; Wang, J.; Zhong, W.; Tang, F.; Yang, Z. L, Zheng, J. M.; Li, X. In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chem. Eng. J. 2019, 356, 895–903.

Nano Research Energy
Cite this article:
Wang J, Bai Z, Zhao Z, et al. Electron/ion-conductive and flexible dual-functional copolymer enabled by EDOT and h2PDMS for optimized Li-ion batteries. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120133

288

Views

53

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 09 May 2024
Revised: 02 July 2024
Accepted: 04 July 2024
Published: 01 August 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return