Electron/ion-conductive flexible copolymer PEDOT-PDMS (poly(3,4-ethylenedioxythiophene)-poly(dimethylsiloxane)) was successfully developed, which not only effectively optimizes high-voltage NaLiFePO4F cathode through dripping on electrode surface but also improves high-capacity Si anode through in-situ polymerization on the surface of Si particles. Theoretical calculation and experiments indicate that π-π conjugated structure in PEDOT-PDMS molecular chains easily interacts with PF6– anions, providing electron transfer pathways and preventing HF production. Moreover, Li ions transfer through Si-O in the amorphous phase of the copolymer, and its Young’s modulus at rupture is 1.17±0.10 MPa. The in-situ TEM results directly confirm that the polymer layer provides conducting pathways and buffers the stress induced by lithiation. With the NaLiFePO4F coated cathode, the cells show good cycle stability (~100% of capacity retention after 500 cycles) and high chemical diffusion coefficient of lithium-ions (1.89×10–9 cm2·s–1 and 1.20×10–9 cm2·s–1). In the case of coated Si anode, a capacity of 1512 mAh·g–1 is retained after 1000 cycles at 0.5 C with a capacity retention of 69.8% in terms of the highest specific capacity around the 160th cycle. This work opens a new avenue for the simultaneous optimization of cathode and anode with a functional polymer.
Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.
Li, Z. W.; Han, M. S.; Yu, P. L.; Lin, J. S.; Yu, J. Macroporous directed and interconnected carbon architectures endow amorphous silicon nanodots as low-strain and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 2024, 16, 98.
Su, C.; Gao, X.; Liu, K. J.; Dai, Y. H.; Dong, H. B.; Liu, Y. Y.; Zhu, J. Y.; Zhang, Q. X.; He, H. Z.; He, G. J. From lab to market: A review of commercialization and advances for binders in lithium-, zinc-, sodium-ion batteries. Nano Res. Energy 2024, 3, e9120094.
Xu, G. L.; Liu, J. Z.; Amine, R.; Chen, Z. H.; Amine, K. Selenium and selenium-sulfur chemistry for rechargeable lithium batteries: Interplay of cathode structures, electrolytes, and interfaces. ACS Energy Lett. 2017, 2, 605–614.
Wu, Y.; Ma, F.; Zhang, Z. H.; Chen, D. Q.; Yu, H. S.; Zhang, X. J.; Ding, F.; Zhang, L.; Chen, Y. F. Amorphous lithiophilic cobalt-boride@rGO interlayer for dendrite-free and highly stable lithium metal batteries. EcoEnergy 2024, 2, 299–310.
Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.
Shen, J.; Zhang, S. L.; Wang, H. L.; Wang, R. X.; Hu, Y. Y.; Mao, Y. Y.; Wang, R. L.; Zhang, H. H.; Du, Y. M.; Fan, Y. M. et al. Unlocking the potential of silicon anodes in lithium-ion batteries: A claw-inspired binder with synergistic interface bonding. eScience 2024, 4, 100207.
Du, F. H.; Wang, K. X.; Chen, J. S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50.
Wang, J. W.; Zhao, Z. J.; Hu, F.; Song, H. Q.; Xie, Q. R.; Wan, X. J.; Song, S. H. Highly reversible Zn metal anodes enabled by multifunctional poly zinc acrylate protective coating. Chem. Eng. J. 2023, 451, 139058.
Li, L.; Nam, J.S.; Kim, M. S.; Wang, Y. F.; Jiang, S. H.; Hou, H. Q.; Kim, I. D. Sulfur-carbon electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life lithium-sulfur batteries. Adv. Energy Mater. 2023, 13, 2302139.
Xiao, B. W.; Sun, X. L. Surface and subsurface reactions of lithium transition metal oxide cathode materials: An overview of the fundamental origins and remedying approaches. Adv. Energy Mater. 2018, 8, 1802057.
Zeng, G. F.; Sun, Q.; Horta, S.; Wang, S.; Lu, X.; Zhang, C. Y.; Li, J.; Li, J. S.; Ci, L. J.; Tian, Y. H.; Ibáñez, M.; Cabot, A. A layered Bi2Te3@PPy cathode for aqueous zinc-ion batteries: Mechanism and application in printed flexible batteries. Adv. Mater. 2023, 36, 2305128.
Zhang, F.; Xiong, P.; Guo, X.; Zhang, J. Q.; Yang, W.; Wu, W. J.; Liu, H.; Wang, G. X. A nitrogen, sulphur dual-doped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium-selenium batteries. Energy Storage Mater. 2019, 19, 251–260.
Xu, G. L.; Liu, Q.; Lau, K. K. S.; Liu, Y. Z.; Liu, X.; Gao, H.; Zhou, X. W.; Zhuang, M. H.; Ren, Y.; Li, J. D. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494.
Raza, H.; Bai, S. Y.; Cheng, J. Y.; Majumder, S.; Zhu, H.; Liu, Q.; Zheng, G. P.; Li, X. F.; Chen, G. H. Li–S batteries: Challenges, achievements and opportunities. Electrochem. Energy Rev. 2023, 6, 29.
Wang, M. J.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Miao, L. X.; Zhang, X. L.; Huang, Y. Q.; Yu, Z. B.; Qiu, J. Y. A multi-core-shell structured composite cathode material with a conductive polymer network for Li–S batteries. Chem. Commun. 2013, 49, 10263–10265.
Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.
Meng, J. W.; Chu, F. L.; Hu, J. L.; Li, C. L. Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries. Adv. Funct. Mater. 2019, 29, 1902220.
Zengin, A.; Badak, M. U.; Bilici, M.; Suludere, Z.; Aktas, N. Preparation of molecularly imprinted PDMS elastomer for selective detection of folic acid in orange juice. Appl. Surf. Sci. 2019, 471, 168–175.
Klasner, S. A.; Metto, E. C.; Roman, G. T.; Culbertson, C. T. Synthesis and characterization of a poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer for fabrication of amphiphilic surfaces on microfluidic devices. Langmuir 2009, 25, 10390–10396.
Chen, R.; Sun, K.; Zhang, Q.; Zhou, Y. L.; Li, M.; Sun, Y. Y.; Wu, Z.; Wu, Y. Y.; Li, X. L.; Xi, J. L. et al. Sequential solution polymerization of poly(3,4-ethylenedioxythiophene) using V2O5 as oxidant for flexible touch sensors. iScience 2019, 12, 66–75.
Wei, B.; Liu, J. L.; Ouyang, L. Q.; Martin, D. C. POSS-ProDOT crosslinking of PEDOT. J. Mater. Chem. B 2017, 5, 5019–5026.
Risangud, N.; Li, Z. J.; Anastasaki, A.; Wilson, P.; Kempe, K.; Haddleton, D. M. Hydrosilylation as an efficient tool for polymer synthesis and modification with methacrylates. RSC Adv. 2015, 5, 5879–5885.
Sharma, P.; Patel, D. K.; Kancharlapalli, S.; Magdassi, S.; Sasson, Y. Facile combined experimental and computational study: g-C3N4@PDMS-assisted Knoevenagel condensation reaction under phase transfer conditions. ACS Sustain. Chem. Eng. 2020, 8, 2350–2360.
Lee, S.; Gleason, K. K. Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical vapor deposition. Adv. Funct. Mater. 2015, 25, 85–93.
Kayser, L. V.; Russell, M. D.; Rodriquez, D.; Abuhamdieh, S. N.; Dhong, C.; Khan, S.; Stein, A. N.; Ramírez, J.; Lipomi, D. J. RAFT polymerization of an intrinsically stretchable water-soluble block copolymer scaffold for PEDOT. Chem. Mater. 2018, 30, 4459–4468.
Noh, J. S. Highly conductive and stretchable poly(dimethylsiloxane):Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonic acid) blends for organic interconnects. RSC Adv. 2014, 4, 1857–1863.
Klonos, P.; Sulym, I. Y.; Borysenko, M. V.; Gun'ko, V. M.; Kripotou, S.; Kyritsis, A.; Pissis, P. Interfacial interactions and complex segmental dynamics in systems based on silica-polydimethylsiloxane core-shell nanoparticles: Dielectric and thermal study. Polymer 2015, 58, 9–21.
Kayser, L. V.; Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133.
Lin, Z. Y.; Guo, X. W.; Yu, H. J. Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy 2017, 41, 646–653.
Ahn, J.; Yoon, S.; Jung, S. G.; Yim, J. H, Cho, K. Y. A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 21214–21222.
Chang, Q.; Fu, X. L.; Gao, J. C.; Zhang, Z. H.; Liu, X.; Huang, C. S.; Li, Y. L. Advanced multilayered electrode with planar building blocks structure for high-performance lithium-ion storage. Adv. Mater. 2023, 35, 2305317.
Cai, R.; Wang, Y.; Wang, J. R.; Zhang, J. F.; Yu, C. P.; Qin, Y. Q.; Cui, J. W.; Zhang, Y.; Tiwary, C. S.; Wu, Y. C. Accelerated hydrogen production on atomically thin silicon nanosheets photocatalyst with unique surface adsorption chemistry. Int. J. Hyd. Energy 2024, 51, 929–935.
Eslamisaray, M. A.; Wray, P. R.; Lee, Y.; Nelson, G. M.; Ilic, O.; Atwater, H. A.; Kortshagen, U. R. A single-step bottom-up approach for synthesis of highly uniform mie-resonant crystalline semiconductor particles at visible wavelengths. Nano Lett. 2023, 23, 1930–1937.
Kvarnström, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H. J.; Kankare, J.; Ivaska, A. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim. Acta 1999, 44, 2739–2750.
Wang, M. S.; Wang, G. L.; Wang, S.; Zhang, J.; Wang, J.; Zhong, W.; Tang, F.; Yang, Z. L, Zheng, J. M.; Li, X. In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chem. Eng. J. 2019, 356, 895–903.