AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Uniformly dispersed bismuth metal nano catalyst modified carbon cloth electrode for iron-chromium flow battery

Yinping Liu§Chao Guo§Guangfu WuWenjie LvRuichen ZhouWei QiuYang ZhouQuan XuChunming XuYingchun Niu( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China

§ Yinping Liu and Chao Guo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Due to the advantages of low cost and good stability, iron-chromium flow batteries (ICRFBs) have been widely used in energy storage development. However, issues such as poor Cr3+/Cr2+ activity still need to be addressed urgently. To improve the slow reaction kinetics of the Cr redox pairs, we propose a method of preparing nano bismuth catalyst modified carbon cloth electrode (TBCC) based on intrinsic defect assisted catalyst attachment. By utilizing the carbon thermal reaction to firmly adhere the bismuth catalyst to the electrode surface, the electrochemical performance and reaction kinetics of the TBCC electrode are significantly improved. It proved that the polarization of the battery assembled with the modified electrode was reduced, and the energy efficiency was significantly improved compared to the original carbon cloth electrode. Charging and discharging tests were conducted at a high current density of 140 mA/cm2, achieving average energy efficiency of up to 82.9%, and even achieving ultra-high energy efficiency of 88.95% at the current density of 80 mA/cm2. This provides broad prospects for the commercialization of ICRFBs.

Electronic Supplementary Material

Download File(s)
0135_ESM.pdf (1.1 MB)

References

[1]

Sun, C. Y.; Zhang, H. Review of the development of first-generation redox flow batteries: Iron-chromium system. ChemSusChem 2022, 15, e202101798.

[2]

Cho, Y. I.; Park, S. J.; Hwang, H. J.; Lee, J. G.; Jeon, Y. K.; Chu, Y. H.; Shul, Y. G. Effects of microwave treatment on carbon electrode for vanadium redox flow battery. ChemElectroChem 2015, 2, 872–876.

[3]

Li, B.; Liu, J. Progress and directions in low-cost redox-flow batteries for large-scale energy storage. Natl. Sci. Rev. 2017, 4, 91–105.

[4]

Yang, Y. Y.; Xiong, Y. L.; Yang, J. Y.; Qian, D. L.; Chen, Y. Z.; He, Y. L.; Hu, Z. Three-dimensional heterostructured CoSe2/MoSe2@CC as trifunctional electrocatalysts for energy-efficient hydrogen production. Energy Fuels 2024, 38, 2260–2272.

[5]

Saito, T.; Matsuo, Y.; Tabata, K.; Makino, T.; Nohara, T.; Masuhara, A. Highly proton conductive membranes based on poly(vinylphosphonic acid)-coated cellulose nanocrystals and cellulose nanofibers for polymer electrolyte fuel cells. Energy Fuels 2024, 38, 4645–4652.

[6]

Niu, Y. C.; Guo, C.; Liu, Y. P.; Wu, G. F.; Zhou, T. H.; Qu, F. G.; Yang, Z. J.; Heydari, A.; Xu, C. M.; Xu, Q. Fabrication of highly effective electrodes for iron chromium redox flow battery. Nano Res. 2024, 17, 3988–3996.

[7]

Shivamurthy, B. P.; Thripuranthaka, M.; Shelke, M. V.; Nayaka, G. P. Influence of the crystal plane orientation in enhancing the electrochemical performance of a trication-substituted cathode for Li-ion batteries. Energy Fuels 2024, 38, 4653–4665.

[8]

Park, S.; Jun, J. H.; Park, M.; Jeong, J.; Jo, J. H.; Jeon, S.; Yang, J. C.; Choi, S. M.; Jo, W.; Lee, J. H. Hierarchically designed Co4Fe3@N-doped graphitic carbon as an electrocatalyst for oxygen evolution in anion-exchange-membrane water electrolysis. Energy Fuels 2024, 38, 4451–4463.

[9]

Xu, Q.; Wang, S. Y.; Xu, C. M.; Chen, X. Y.; Zeng, S. W.; Li, C. Y.; Zhou, Y.; Zhou, T. H.; Niu, Y. C. Synergistic effect of electrode defect regulation and Bi catalyst deposition on the performance of iron-chromium redox flow battery. Chin. Chem. Lett. 2023, 34, 108188.

[10]

Zhu, H. T.; Bai, E. R.; Sun, C. Y.; Liu, G. C.; Zhang, Z. Y.; Xie, X. Y.; Xu, C. Y.; Wu, S. Biomass pomelo peel modified graphite felt electrode for iron-chromium redox flow battery. J. Mater. Sci. 2023, 58, 17313–17325.

[11]

Zhang, H.; Chen, N.; Sun, C. Y.; Luo, X. D. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery. Int. J. Energy Res. 2020, 44, 3839–3853.

[12]

Xie, C. Y.; Yan, H.; Song, Y. F.; Song, Y. X.; Yan, C. W.; Tang, A. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries. J. Power Sources 2023, 564, 232860.

[13]

Tang, L. Y.; Li, T. Y.; Lu, W. J.; Li, X. F. Reversible solid bromine complexation into Ti3C2T x MXene carriers: A highly active electrode for bromine-based flow batteries with ultralow self-discharge. Energy Environ. Sci. 2024, 17, 3136–3145.

[14]

Niu, Y. C.; Heydari, A.; Qiu, W.; Guo, C.; Liu, Y. P.; Xu, C. M.; Zhou, T. H.; Xu, Q. Machine learning-enabled performance prediction and optimization for iron-chromium redox flow batteries. Nanoscale 2024, 16, 3994–4003.

[15]

Xu, Q.; Chen, X. Y.; Wang, S. Y.; Guo, C.; Niu, Y. C.; Zuo, R. G.; Yang, Z. J.; Zhou, Y.; Xu, C. M. The recycling of waste per-fluorinated sulfonic acid for reformulation and membrane application in iron-chromium redox flow batteries. Energies 2022, 15, 8717.

[16]

He, Z. X.; Lv, Y. R.; Zhang, T. A.; Zhu, Y.; Dai, L.; Yao, S.; Zhu, W. J.; Wang, L. Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst. Chem. Eng. J. 2022, 427, 131680.

[17]

Fu, Y.; Hu, J.; Wang, Q.; Lin, D. M.; Li, K. K.; Zhou, L. M. Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium-sulfur batteries. Carbon 2019, 150, 76–84.

[18]

Fan, X. Z.; Pang, Q. Q.; Yi, S. S.; Du, X.; Zhang, S.; Liu, Z. Y.; Yue, X. Z. Intrinsic-structural-modulated carbon cloth as efficient electrocatalyst for water oxidation. Appl. Catal. B: Environ. 2021, 292, 120152.

[19]

Xie, X.; Chan, C. Y.; Daoud, W. A. NiMoO4 nanorods with rich catalytic sites as a superb electrocatalyst for cerium-based flow batteries. J. Mater. Chem. A 2021, 9, 24943–24954.

[20]

Hassan, A.; Tzedakis, T. Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7. J. Energy Storage 2019, 26, 100967.

[21]

Dai, L.; Jiang, Y. Q.; Meng, W.; Zhou, H. Z.; Wang, L.; He, Z. X. Improving the electrocatalytic performance of carbon nanotubes for VO2+/VO2+ redox reaction by KOH activation. Appl. Surf. Sci. 2017, 401, 106–113.

[22]

Wei, L.; Zhao, T. S.; Zeng, L.; Zhou, X. L.; Zeng, Y. K. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energy 2016, 180, 386–391.

[23]
Niu, Y. C.; Liu, Y. P.; Zhou, T. H.; Guo, C.; Wu, G. F.; Lv, W. J.; Heydari, A.; Peng, B.; Xu, C. M.; Xu, Q. Insights into novel indium catalyst to kW scale low cost, high cycle stability of iron-chromium redox flow battery. Green Energy Environ., in press, DOI: 10.1016/j.gee.2024.04.005.
[24]

Hassan Zaidi, S. S.; Rajendran, S.; Sekar, A.; Elangovan, A.; Li, J.; Li, X. L. Binder-free Li-O2 battery cathodes using Ni- and PtRu-coated vertically aligned carbon nanofibers as electrocatalysts for enhanced stability. Nano Res. Energy 2023, 2, e9120055.

[25]

Fetyan, A.; El-Nagar, G. A.; Derr, I.; Kubella, P.; Dau, H.; Roth, C. A neodymium oxide nanoparticle-doped carbon felt as promising electrode for vanadium redox flow batteries. Electrochim. Acta 2018, 268, 59–65.

[26]

Liu, Y. P.; Niu, Y. C.; Guo, C.; Qu, F. G.; Liu, Z. Y.; Zhou, X.; Guo, W. W.; Xu, C. M.; Xu, Q. Nitrogen-doped bismuth oxide-modified carbon cloth as a bifunctional electrocatalyst for iron-chromium redox flow batteries. Energy Fuels 2024, 38, 12202–12211.

[27]

Narayanan, T. M.; Zhu, Y. G.; Gençer, E.; McKinley, G.; Shao-Horn, Y. Low-cost manganese dioxide semi-solid electrode for flow batteries. Joule 2021, 5, 2934–2954.

[28]

Wang, R.; Hao, M. S.; He, C.; Tu, Z. J.; Chong, F. Z.; Li, Y. S. Gradient-distributed NiCo2O4 nanorod electrode for redox flow batteries: Establishing the ordered reaction interface to meet the anisotropic mass transport. Appl. Catal. B: Environ. 2023, 332, 122773.

[29]

Li, B.; Gu, M.; Nie, Z. M.; Wei, X. L.; Wang, C. M.; Sprenkle, V.; Wang, W. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett. 2014, 14, 158–165.

[30]

Guo, J. C.; Pan, L.; Sun, J.; Wei, D. B.; Dai, Q. X.; Xu, J. H.; Li, Q. L.; Han, M. S.; Wei, L.; Zhao, T. S. Metal-free fabrication of nitrogen-doped vertical graphene on graphite felt electrodes with enhanced reaction kinetics and mass transport for high-performance redox flow batteries. Adv. Energy Mater. 2024, 14, 2302521.

[31]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[32]

Liu, H. T.; Liu, F.; Qu, Z. H.; Chen, J. L.; Liu, H.; Tan, Y. Q.; Guo, J. B.; Yan, Y.; Zhao, S.; Zhao, X. S. et al. High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy 2023, 2, e9120049.

[33]

Bayeh, A. W.; Kabtamu, D. M.; Chang, Y. C.; Chen, G. C.; Chen, H. Y.; Lin, G. Y.; Liu, T. R.; Wondimu, T. H.; Wang, K. C.; Wang, C. H. Ta2O5-nanoparticle-modified graphite felt as a high-performance electrode for a vanadium redox flow battery. ACS Sustain. Chem. Eng. 2018, 6, 3019–3028.

[34]

Xiang, Y.; Daoud, W. A. Investigation of an advanced catalytic effect of cobalt oxide modification on graphite felt as the positive electrode of the vanadium redox flow battery. J. Power Sources 2019, 416, 175–183.

[35]

Li, Z.; Guo, L. L.; Chen, N.; Su, Y.; Wang, X. M. Boric acid thermal etching graphite felt as a high-performance electrode for iron-chromium redox flow battery. Mater. Res. Express 2022, 9, 025601.

[36]

Jiang, Y. Q.; Wang, Y. H.; Cheng, G.; Li, Y. H.; Dai, L.; Zhu, J.; Meng, W.; Xi, J. Y.; Wang, L.; He, Z. X. Multiple-dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery. Carbon Energy 2024, 6, e537.

[37]

Wen, Y.; Neville, T. P.; Sobrido, A. J.; Shearing, P. R.; Brett, D. J. L.; Jervis, R. Bismuth concentration influenced competition between electrochemical reactions in the all-vanadium redox flow battery. J. Power Sources 2023, 566, 232861.

[38]

Karaeyvaz, C.; Fiçicilar, B. Surface modified and bismuth loaded graphite felts for improvement of anode electrode kinetics in iron chromium redox flow battery. Mugla J. Sci. Technol. 2020, 6, 95–104.

[39]

González, Z.; Sánchez, A.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochem. Commun. 2011, 13, 1379–1382.

[40]

Ren, J. Y.; Wang, Z. Y.; Sun, J.; Guo, Z. X.; Liu, B.; Fan, X. Z.; Zhao, T. S. In-situ electrodeposition of homogeneous and dense bismuth nanoparticles onto scale-up graphite felt anodes for vanadium redox flow batteries. J. Power Sources 2023, 586, 233655.

[41]

Liu, Y. P.; Niu, Y. C.; Ouyang, X. C.; Guo, C.; Han, P. Y.; Zhou, R. C.; Heydari, A.; Zhou, Y.; Ikkala, O.; Tigranovich, G. A. et al. Progress of organic, inorganic redox flow battery and mechanism of electrode reaction. Nano Res. Energy 2023, 2, e9120081.

Nano Research Energy
Cite this article:
Liu Y, Guo C, Wu G, et al. Uniformly dispersed bismuth metal nano catalyst modified carbon cloth electrode for iron-chromium flow battery. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120135

694

Views

231

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 17 June 2024
Revised: 15 July 2024
Accepted: 22 July 2024
Published: 05 August 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return