AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Piezoelectricity and triboelectricity enhanced catalysis

Nianzu Liu1,§( )Ruoxing Wang2,§( )Jiawei Zhao3,§Jing Jiang2,4( )Feng Ru Fan3( )
School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA

§ Nianzu Liu, Ruoxing Wang, and Jiawei Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

This review accounts for recent advancements in piezoelectricity and triboelectricity enhanced catalysis, covering basic understandings, catalyst design, and performance insights. Finally, challenges and future opportunities for piezoelectricity and triboelectricity enhanced catalysis are discussed.

Abstract

Piezoelectric and triboelectric enhanced catalysis use mechanical stimuli to enhance the performance of catalysts in energy conversion and pollutant degradation. The electric field generated by piezoelectric materials can tune the charge migration behavior and redox kinetics of catalysts, leading to improved efficiency in energy conversion and pollutant degradation. Triboelectrification can also generate an electric field when two different materials come into contact, and this effect can be used to enhance catalytic reactions. Research in this area is still in its early stages, but it has the potential to significantly improve the efficiency of energy conversion and pollutant degradation and provide a promising method for environmental remediation. This review accounts for recent advancements in piezoelectricity and triboelectricity enhanced catalysis, covering basic understandings, catalyst design, and performance insights. Finally, challenges and future opportunities for piezoelectricity and triboelectricity enhanced catalysis are discussed.

References

[1]

Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable energy in the sustainable development of electrical power sector: A review. Energies 2021, 14, 8240.

[2]

Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.

[3]

Wang, C. L.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev. 2014, 43, 7188–7216.

[4]

Su, J. W.; Ge, R. X.; Dong, Y.; Hao, F.; Chen, L. Recent progress in single-atom electrocatalysts: Concept, synthesis, and applications in clean energy conversion. J. Mater. Chem. A 2018, 6, 14025–14042.

[5]

Qian, W. Q.; Xu, S. W.; Zhang, X. M.; Li, C. B.; Yang, W. Y.; Bowen, C. R.; Yang, Y. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: Strategies, traps, applications and challenges. Nano-Micro Lett. 2021, 13, 156.

[6]

Liang, Z.; Yan, C. F.; Rtimi, S.; Bandara, J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl. Catal. B: Environ. 2019, 241, 256–269.

[7]

Fan, F. R.; Xie, S. J.; Wang, G. W.; Tian, Z. Q. Tribocatalysis: Challenges and perspectives. Sci. China Chem. 2021, 64, 1609–1613.

[8]

Wang, R. X.; Sui, J.; Wang, X. D. Natural piezoelectric biomaterials: A biocompatible and sustainable building block for biomedical devices. ACS Nano 2022, 16, 17708–17728.

[9]

Zou, H. Y.; Guo, L. T.; Xue, H.; Zhang, Y.; Shen, X. F.; Liu, X. T.; Wang, P. H.; He, X.; Dai, G. Z.; Jiang, P. et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 2093.

[10]

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

[11]

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

[12]

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

[13]

Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[14]

Chorsi, M. T.; Curry, E. J.; Chorsi, H. T.; Das, R.; Baroody, J.; Purohit, P. K.; Ilies, H.; Nguyen, T. D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 2019, 31, 1802084.

[15]

Rajala, S.; Siponkoski, T.; Sarlin, E.; Mettänen, M.; Vuoriluoto, M.; Pammo, A.; Juuti, J.; Rojas, O. J.; Franssila, S.; Tuukkanen, S. Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces 2016, 8, 15607–15614.

[16]

Hu, Y. F.; Wang, Z. L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 2015, 14, 3–14.

[17]

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[18]

Pan, L.; Sun, S. C.; Chen, Y.; Wang, P. H.; Wang, J. Y.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 2020, 10, 2000214.

[19]

Wu, W. Z.; Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 1, 6031.

[20]

Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.

[21]
Kumar, R. P.; Bharathiraja, B. Nanomaterials: Application in Biofuels and Bioenergy Production Systems; Academic Press, London, 2021 .
[22]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[23]

Chen, F.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 2021, 33, 2005256.

[24]

Li, Z.; Xiao, J. D.; Jiang, H. L. Encapsulating a Co(II) molecular photocatalyst in metal-organic framework for visible-light-driven H2 production: Boosting catalytic efficiency via spatial charge separation. ACS Catal. 2016, 6, 5359–5365.

[25]

Wang, H.; Wang, X. M.; Chen, R. T.; Zhang, H. F.; Wang, X. L.; Wang, J. H.; Zhang, J.; Mu, L. C.; Wu, K. F.; Fan, F. T. et al. Promoting photocatalytic H2 evolution on organic-inorganic hybrid perovskite nanocrystals by simultaneous dual-charge transportation modulation. ACS Energy Lett. 2019, 4, 40–47.

[26]

Voiry, D.; Fullon, R.; Yang, J. ; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

[27]

Starr, M. B.; Wang, X. D. Coupling of piezoelectric effect with electrochemical processes. Nano Energy 2015, 14, 296–311.

[28]

Yoo, J.; Cho, S.; Kim, W.; Kwon, J. Y.; Kim, H.; Kim, S.; Chang, Y. S.; Kim, C. W.; Choi, D. Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators. Nanotechnology 2015, 26, 275402.

[29]

Tu, S. C.; Guo, Y. X.; Zhang, Y. H.; Hu, C.; Zhang, T. R.; Ma, T. Y.; Huang, H. W. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Funct. Mater. 2020, 30, 2005158.

[30]

Wang, K.; Han, C.; Li, J. Q.; Qiu, J. S.; Sunarso, J.; Liu, S. M. The mechanism of piezocatalysis: Energy band theory or screening charge effect. Angew. Chem., Int. Ed. 2022, 61, e202110429.

[31]

Tian, W. R.; Qiu, J. H.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Efficient piezocatalytic removal of BPA and Cr(VI) with SnS2/CNFs membrane by harvesting vibration energy. Nano Energy 2021, 86, 106036.

[32]

Xue, X. Y.; Zang, W. L.; Deng, P.; Wang, Q.; Xing, L. L.; Zhang, Y.; Wang, Z. L. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 2015, 13, 414–422.

[33]

Feng, Y. W.; Ling, L. L.; Wang, Y. X.; Xu, Z. M.; Cao, F. L.; Li, H. X.; Bian, Z. F. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy 2017, 40, 481–486.

[34]

Hong, K. S.; Xu, H. F.; Konishi, H.; Li, X. C. Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 2010, 1, 997–1002.

[35]

Hong, K. S.; Xu, H. F.; Konishi, H.; Li, X. C. Piezoelectrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C 2012, 116, 13045–13051.

[36]

Zhou, X. F.; Shen, B.; Lyubartsev, A.; Zhai, J. W.; Hedin, N. Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis. Nano Energy 2022, 96, 107141.

[37]

Amiri, O.; Salar, K.; Othman, P.; Rasul, T.; Faiq, D.; Saadat, M. Purification of wastewater by the piezo-catalyst effect of PbTiO3 nanostructures under ultrasonic vibration. J. Hazard. Mater. 2020, 394, 122514.

[38]

Nie, Q.; Xie, Y. F.; Ma, J. M.; Wang, J. L.; Zhang, G. K. High piezo-catalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. J. Cleaner Prod. 2020, 242, 118532.

[39]

Feng, J. X.; Sun, J. X.; Liu, X. S.; Zhu, J. Z.; Xiong, Y.; Tian, S. H. Enhancement and mechanism of nano-BaTiO3 piezocatalytic degradation of tricyclazole by co-loading Pt and RuO2. Environ. Sci.: Nano 2019, 6, 2241–2252.

[40]

Bagchi, B.; Hoque, N. A.; Janowicz, N.; Das, S.; Tiwari, M. K. Re-usable self-poled piezoelectric/piezocatalytic films with exceptional energy harvesting and water remediation capability. Nano Energy 2020, 78, 105339.

[41]

Wang, Y. F.; Xu, Y. M.; Dong, S. S.; Wang, P.; Chen, W.; Lu, Z. D.; Ye, D. J.; Pan, B. C.; Wu, D.; Vecitis, C. D. et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat. Commun. 2021, 12, 3508.

[42]

Thakur, D.; Sharma, M.; Balakrishnan, V.; Vaish, R. Reusable piezocatalytic water disinfection activity of CVD-grown few-layer WS2 on sapphire substrate. Environ. Sci.: Nano 2022, 9, 805–814.

[43]

Feng, J. X.; Fu, Y.; Liu, X. S.; Tian, S. H.; Lan, S. Y.; Xiong, Y. Significant improvement and mechanism of ultrasonic inactivation to Escherichia coli with piezoelectric effect of hydrothermally synthesized t-BaTiO3. ACS Sustainable Chem. Eng. 2018, 6, 6032–6041.

[44]

Wang, Y.; Wen, X. R.; Jia, Y. M.; Huang, M.; Wang, F. F.; Zhang, X. H.; Bai, Y. Y.; Yuan, G. L.; Wang, Y. J. Piezo-catalysis for nondestructive tooth whitening. Nat. Commun. 2020, 11, 1328.

[45]

Liao, Y.; Wang, D. M.; Zhu, S.; Zhou, R. Y.; Rahbarizadeh, F.; Gu, Z. J. Piezoelectric materials for synergistic piezo- and radio-catalytic tumor therapy. Nano Today 2022, 44, 101510.

[46]

Wang, J. J.; Hu, C.; Shi, L.; Tian, N.; Huang, H. W.; Ou, H. L.; Zhang, Y. H. Energy and environmental catalysis driven by stress and temperature-variation. J. Mater. Chem. A 2021, 9, 12400–12432.

[47]

Wu, J. M.; Chang, W. E.; Chang, Y. T.; Chang, C. K. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single-and few-layers MoS2 nanoflowers. Adv. Mater. 2016, 28, 3718–3725.

[48]

Wei, Y.; Zhang, Y. W.; Geng, W.; Su, H. R.; Long, M. C. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Appl. Catal. B: Environ. 2019, 259, 118084.

[49]

Su, C. J.; Li, R. H.; Li, C. L.; Wang, W. H. Piezo-promoted regeneration of Fe2+ boosts peroxydisulfate activation by Bi2Fe4O9 nanosheets. Appl. Catal. B: Environ. 2022, 310, 121330.

[50]

Cai, Y. W.; Zhang, Y. F.; Lv, Z. M.; Zhang, S.; Gao, F. X.; Fang, M.; Kong, M. G.; Liu, P. S.; Tan, X. L.; Hu, B. W. et al. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal. B: Environ. 2022, 310, 121343.

[51]

Phuong, P. T. T.; Vo, D. V. N.; Duy, N. P. H.; Pearce, H.; Tsikriteas, Z. M.; Roake, E.; Bowen, C.; Khanbareh, H. Piezoelectric catalysis for efficient reduction of CO2 using lead-free ferroelectric particulates. Nano Energy 2022, 95, 107032.

[52]

Peng, F. P.; Lin, J. Y.; Li, H. Z.; Liu, Z. M.; Su, Q. H.; Wu, Z.; Xiao, Y. F.; Yu, H. B.; Zhang, M. J.; Wu, C. Z. et al. Design of piezoelectric ZnO based catalysts for ammonia production from N2 and H2O under ultrasound sonication. Nano Energy 2022, 95, 107020.

[53]

Xu, X. L.; Xiao, L. B.; Wu, Z.; Jia, Y. M.; Ye, X.; Wang, F. F.; Yuan, B.; Yu, Y.; Huang, H. F.; Zou, G. F. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite. Nano Energy 2020, 78, 105351.

[54]

Bian, J. J.; Sun, C. W. Piezotronic-enhanced oxygen evolution reaction enabled by a Au/MoS2 nanosheet catalyst. Catal. Sci. Technol. 2020, 10, 6180–6187.

[55]

Chung, Y. J.; Yang, C. S.; Lee, J. T.; Wu, G. H.; Wu, J. M. Coupling effect of piezo-flexocatalytic hydrogen evolution with hybrid 1T- and 2H-phase few-layered MoSe2 nanosheets. Adv. Energy Mater. 2020, 10, 2002082.

[56]

Chen, Z. W.; Zhou, H. R.; Kong, F. H.; Wang, M. Piezocatalytic oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancarboxylic acid over Pt decorated hydroxyapatite. Appl. Catal. B: Environ. 2022, 309, 121281.

[57]

Wu, M. H.; Lee, J. T.; Chung, Y. J.; Srinivaas, M.; Wu, J. M. Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano Energy 2017, 40, 369–375.

[58]

Chai, M. N.; Tong, W. S.; Wang, Z. H.; Chen, Z. S.; An, Y. C.; Zhang, Y. H. Piezoelectric-Fenton degradation and mechanism study of Fe2O3/PVDF-HFP porous film drove by flowing water. J. Hazard. Mater. 2022, 430, 128446.

[59]

Lan, S. Y.; Feng, J. X.; Xiong, Y.; Tian, S. H.; Liu, S. W.; Kong, L. J. Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: Finding of effective piezo-dechlorination. Environ. Sci. Technol. 2017, 51, 6560–6569.

[60]

Peng, F.; Yin, R.; Liao, Y. H.; Xie, X.; Sun, J. L.; Xia, D. H.; He, C. Kinetics and mechanisms of enhanced degradation of ibuprofen by piezo-catalytic activation of persulfate. Chem. Eng. J. 2020, 392, 123818.

[61]

Zheng, Y.; Yang, J.; Gong, B. R.; Zhang, X. H.; Li, J. F.; Zheng, H. L.; Chen, G. P.; Zhao, C. Hydraulic-driven piezo-activation of peroxymonosulfate for carbamazepine degradation with ultralow energy consumption. Chem. Eng. J. 2022, 441, 136116.

[62]

Zhu, M. D.; Chen, X. Q.; Tang, Y.; Hou, S.; Yu, Y.; Fan, X. Y. Piezo-promoted persulfate activation by SrBi2B2O7 for efficient sulfadiazine degradation from water. J. Hazard. Mater. 2022, 437, 129359.

[63]

Huo, B. J.; Meng, F. Q.; Yang, J. W.; Wang, Y. L.; Qi, J. G.; Ma, W.; Wang, Z. C.; Wang, J. X.; Wang, Z. H. High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: Mechanism and toxicity evaluation. Chem. Eng. J. 2022, 436, 135173.

[64]

Yu, Y.; Wang, X. X.; Xie, G. X.; Ma, J. Q.; Lv, T. Y.; Du, K. F.; Hu, H.; Zhang, J.; Li, Y. Q.; Long, Y. Z. et al. Preparation and piezoelectric catalytic performance of flexible inorganic Ba1– x Ca x TiO3 via electrospinning. J. Mater. Chem. A 2021, 9, 24695–24703.

[65]

Zheng, Y.; Zhuang, W.; Zhang, X. H.; Xiang, J. Y.; Wang, X. X.; Song, Z. H.; Cao, Z. P.; Zhao, C. Grape-like CNTs/BaTiO3 nanocatalyst boosted hydraulic-driven piezo-activation of peroxymonosulfate for carbamazepine removal. Chem. Eng. J. 2022, 449, 137826.

[66]

Qian, W. Q.; Zhao, K.; Zhang, D.; Bowen, C. R.; Wang, Y. H.; Yang, Y. Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. ACS Appl. Mater. Interfaces 2019, 11, 27862–27869.

[67]

Zhu, M. D.; Li, S. Q.; Zhang, H. F.; Gao, J.; Kwok, K. W.; Jia, Y. M.; Kong, L. B.; Zhou, W. Y.; Peng, B. L. Diffused phase transition boosted dye degradation with Ba (ZrxTi1– x )O3 solid solutions through piezoelectric effect. Nano Energy 2021, 89, 106474.

[68]

Guan, J. F.; Jia, Y. M.; Chang, T.; Ruan, L. J.; Xu, T. S.; Zhang, Z.; Yuan, G. L.; Wu, Z.; Zhu, G. Q. Highly efficient piezo-catalysis of the heat-treated cellulose nanocrystal for dye decomposition driven by ultrasonic vibration. Sep. Purif. Technol. 2022, 286, 120450.

[69]

Su, S.; Sun, H. F.; Xu, F.; Yuwen, L. H.; Wang, L, H. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis 2013, 25, 2523–2529.

[70]

Starr, M. B.; Shi, J.; Wang, X. D. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem., Int. Ed. 2012, 51, 5962–5966.

[71]

Wang, C. Y.; Chen, F.; Hu, C.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Efficient piezocatalytic H2O2 production of atomic-level thickness Bi4Ti3O12 nanosheets with surface oxygen vacancy. Chem. Eng. J. 2022, 431, 133930.

[72]

Meng, X. G.; Liu, L. Q.; Ouyang, S. X.; Xu, H.; Wang, D. F.; Zhao, N. Q.; Ye, J. H. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 2016, 28, 6781–6803.

[73]

Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H. C.; Krishnan, V. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small 2022, 18, 2101638.

[74]

Opoku, F.; Govender, K. K. ; van Sittert, C. G. C. E.; Govender, P. P. Recent progress in the development of semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants. Adv. Sustainable Syst. 2017, 1, 1700006.

[75]

Hu, M. Y.; Quan, Y. N.; Yang, S.; Su, R.; Liu, H. L.; Gao, M.; Chen, L.; Yang, J; H. Self-cleaning semiconductor heterojunction substrate: Ultrasensitive detection and photocatalytic degradation of organic pollutants for environmental remediation. Microsyst. Nanoeng. 2020, 6, 111.

[76]

Lu, N.; Zhang, M. Y.; Jing, X. D.; Zhang, P.; Zhu, Y. G.; Zhang, Z. Y. Electrospun semiconductor-based nano-heterostructures for photocatalytic energy conversion and environmental remediation: Opportunities and challenges. Energy Environ. Mater. 2023, 6, e12338.

[77]

Wei, C. T.; Xu, J. P.; Shi, S. B.; Cao, R.; Chen, J.; Dong, H.; Zhang, X. S.; Yin, S. G.; Li, L. Self-powered visible-blind UV photodetectors based on p-NiO nanoflakes/n-ZnO nanorod arrays with an MgO interfacial layer. J. Mater. Chem. C 2019, 7, 9369–9379.

[78]

Wang, H. Y.; Wang, W.; Zhong, Y. L.; Li, D. Y.; Li, Z. X.; Xu, X.; Song, X. Y.; Chen, Y. X.; Huang, P.; Mei, A. Y. et al. Approaching the external quantum efficiency limit in 2D photovoltaic devices. Adv. Mater. 2022, 34, 2206122.

[79]

Liao, J. F.; Wu, W. Q.; Jiang, Y.; Zhong, J. X.; Wang, L. Z.; Kuang, D. B. Understanding of carrier dynamics, heterojunction merits and device physics: Towards designing efficient carrier transport layer-free perovskite solar cells. Chem. Soc. Rev. 2020, 49, 354–381.

[80]

Wang, Z. L.; Wu, W. Z. Piezotronics and piezo-phototronics: Fundamentals and applications. Natl. Sci. Rev. 2014, 1, 62–90.

[81]

Wang, Z. L.; Wu, W. Z.; Falconi, C.; Wang, Z. L.; Wu, W. Z.; Falconi, C. Piezotronics and piezo-phototronics with third-generation semiconductors. MRS Bull. 2018, 43, 922–927.

[82]

Zhang, Y. Z.; Huang, X. L.; Yeom, J. A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination. Nano-Micro Lett. 2019, 11, 11.

[83]

Yuan, J.; Huang, X. Y.; Zhang, L. L.; Gao, F.; Lei, R.; Jiang, C. K.; Feng, W. H.; Liu, P. Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis. Appl. Catal. B: Environ. 2020, 278, 119291.

[84]

Xu, S. Y.; Guo, L. M.; Sun, Q. J.; Wang, Z. L. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv. Funct. Mater. 2019, 29, 1808737.

[85]

Hu, J. Y.; Chen, Y. X.; Zhou, Y. Y.; Zeng, L. X.; Huang, Y. C.; Lan, S. Y.; Zhu, M. S. Piezo-enhanced charge carrier separation over plasmonic Au-BiOBr for piezo-photocatalytic carbamazepine removal. Appl. Catal. B: Environ. 2022, 311, 121369.

[86]

Tang, R. D.; Gong, D. X.; Zhou, Y. Y.; Deng, Y. C.; Feng, C. Y.; Xiong, S.; Huang, Y.; Peng, G. W.; Li, L. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Appl. Catal. B: Environ. 2022, 303, 120929.

[87]

Huang, X. Y.; Lei, R.; Yuan, J.; Gao, F.; Jiang, C. K.; Feng, W. H.; Zhuang, J. D.; Liu, P. Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Appl. Catal. B: Environ. 2021, 282, 119586.

[88]

Zhang, C. X.; Lei, D.; Xie, C. F.; Hang, X. S.; He, C. X.; Jiang, H. L. Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect. Adv. Mater. 2021, 33, 2106308.

[89]

Hu, C.; Huang, H. W.; Chen, F.; Zhang, Y. H.; Yu, H.; Ma, T. Y. Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 2020, 30, 1908168.

[90]

Cong, C.; Rao, C.; Ma, Z. H.; Yuan, Y.; Wang, D. S.; Zhang, X. W.; He, Y. C.; Lou, H. M.; Gao, D. W. Coupling piezo-photocatalysis to imitate lymphoid reflux for enhancing antitumor hydrodynamics therapy. Chem. Eng. J. 2022, 450, 137981.

[91]

Ren, Z. Q.; Xie, J. W.; Li, X.; Guo, L. X.; Zhang, Q. W.; Wu, J. Z.; Li, Y. Q.; Liu, W. L.; Li, P.; Fu, Y. M. et al. Rational design of graphite carbon nitride-decorated zinc oxide nanoarrays on three-dimensional nickel foam for the efficient production of reactive oxygen species through stirring-promoted piezo-photocatalysis. J. Colloid Interface Sci. 2023, 632, 271–284.

[92]

Kang, Y.; Lei, L.; Zhu, C. F.; Zhang, H. J.; Mei, L.; Ji, X. Y. Piezo-photocatalytic effect mediating reactive oxygen species burst for cancer catalytic therapy. Mater. Horiz. 2021, 8, 2273–2285.

[93]

Zhao, Z. C.; Wei, L. Y.; Li, S.; Zhu, L. F.; Su, Y. P.; Liu, Y.; Bu, Y. B.; Lin, Y. H.; Liu, W. S.; Zhang, Z. T. Exclusive enhancement of catalytic activity in Bi0.5Na0.5TiO3 nanostructures: New insights into the design of efficient piezocatalysts and piezo-photocatalysts. J. Mater. Chem. A 2020, 8, 16238–16245.

[94]

Zhao, W.; Zhang, Q.; Wang, H.; Rong, J.; E, L.; Dai, Y. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect. Nano Energy 2020, 73, 104783.

[95]

Liu, Q.; Hu, Q.; Zhai, D.; Sun, Q. W.; Luo, H.; Zhang, D. Superior photo-piezoelectric catalytic performance using Bi0.5Na0.5TiO3@BiVO4 based cloth. J. Mater. Chem. A 2021, 9, 17841–17854.

[96]

Li, S.; Zhao, Z. C.; Liu, M. S.; Liu, X. B.; Huang, W.; Sun, S. K.; Jiang, Y. H.; Liu, Y.; Zhang, J. M.; Zhang, Z. T. Remarkably enhanced photocatalytic performance of Au/AgNbO3 heterostructures by coupling piezotronic with plasmonic effects. Nano Energy 2022, 95, 107031.

[97]

Zhao, X. F.; Li, Z.; Yu, J.; Li, C. H.; Xu, S. C.; Li, F. R.; Zhang, C. T.; Man, B. Y.; Zhang, C. Plasmonic and bi-piezoelectric enhanced photocatalysis using PVDF/ZnO/Au nanobrush. Nanophotonics 2022, 11, 3339–3349.

[98]

Xu, S. W.; Qian, W. Q.; Zhang, D.; Zhao, X. M.; Zhang, X. M.; Li, C. B.; Bowen, C. R.; Yang, Y. A coupled photo-piezo-catalytic effect in a BST-PDMS porous foam for enhanced dye wastewater degradation. Nano Energy 2020, 77, 105305.

[99]

Xu, L.; Liu, L. F. Piezo-photocatalytic fuel cell with atomic Fe@MoS2 on CFC helical electrode has enhanced peroxymonosulfate activation, pollutant degradation and power generation. Appl. Catal. B: Environ. 2022, 304, 120953.

[100]

Singh, S.; Khare, N. Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst. Nano Energy 2017, 38, 335–341.

[101]

Xiang, D. L.; Liu, Z. R.; Wu, M. Q.; Liu, H. H.; Zhang, X. D.; Wang, Z.; Wang, Z. L.; Li, L. L. Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au–ZnO nanorod array. Small 2020, 16, 1907603.

[102]

Shi, Q. J.; Zhang, M.; Zhang, Z. M.; Li, Y. X.; Qu, Y.; Liu, Z. Q.; Yang, J. L.; Xie, M. Z.; Han, W. H. Energy and separation optimization of photogenerated charge in BiVO4 quantum dots by piezo-potential for efficient gaseous pollutant degradation. Nano Energy 2020, 69, 104448.

[103]

Liu, Q.; Li, Z. Y.; Li, J.; Zhan, F. Q.; Zhai, D.; Sun, Q. W.; Xiao, Z. D.; Luo, H.; Zhang, D. Three dimensional BaTiO3 piezoelectric ceramics coated with TiO2 nanoarray for high performance of piezo-photoelectric catalysis. Nano Energy 2022, 98, 107267.

[104]

Zhang, Y.; Wang, S.; Zhao, Y.; Ding, Y.; Zhang, Z.; Jiang, T.; Wang, Z. L.; Li, L. Piezo-phototronic effect boosted catalysis in plasmonic bimetallic ZnO heterostructure with guided fermi level alignment. Mater. Today Nano 2022, 18, 100177.

[105]

Zheng, H. J.; Li, X.; Zhu, K. J.; Liang, P. H.; Wu, M.; Rao, Y.; Jian, R.; Shi, F.; Wang, J.; Yan, K. et al. Semiconducting BaTiO3@C core-shell structure for improving piezo-photocatalytic performance. Nano Energy 2022, 93, 106831.

[106]

Xie, Z. S.; Tang, X. L.; Shi, J. F.; Wang, Y. J.; Yuan, G. L.; Liu, J. M. Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method. Nano Energy 2022, 98, 107247.

[107]

Yu, D. F.; Liu, Z. H.; Zhang, J. M.; Li, S.; Zhao, Z. C.; Zhu, L. F.; Liu, W. S.; Lin, Y. H.; Liu, H.; Zhang, Z. T. Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects. Nano Energy 2019, 58, 695–705.

[108]

Liu, Q.; Zhai, D.; Xiao, Z. D.; Tang, C.; Sun, Q. W.; Bowen, C. R.; Luo, H.; Zhang, D. Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation. Nano Energy 2022, 92, 106702.

[109]

Ma, J. P.; Ren, J.; Jia, Y. M.; Wu, Z.; Chen, L.; Haugen, N. O.; Huang, H. T.; Liu, Y. S. High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 2019, 62, 376–383.

[110]

Zhou, Q.; Shi, Q. Y.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Rh-doped SrTiO3 inverse opal with piezoelectric effect for enhanced visible-light-driven photodegradation of bisphenol A. Environ. Sci.: Nano 2020, 7, 2267–2277.

[111]

Lan, S. Y.; Yu, C.; Sun, F.; Chen, Y. X.; Chen, D. Y.; Mai, W.; Zhu, M. S. Tuning piezoelectric driven photocatalysis by La-doped magnetic BiFeO3-based multiferroics for water purification. Nano Energy 2022, 93, 106792.

[112]

Ding, D.; Li, Z. W.; Yu, S.; Yang, B. X.; Yin, Y. D.; Zan, L.; Myung, N. V. Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation. Sci. Total Environ. 2022, 824, 153790.

[113]

Fu, B.; Li, J. J.; Jiang, H. D.; He, X. L.; Ma, Y. M.; Wang, J. K.; Hu, C. Z. Modulation of electric dipoles inside electrospun BaTiO3@TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants. Nano Energy 2022, 93, 106841.

[114]

Guo, L. M.; Zhong, C. F.; Cao, J. Q.; Hao, Y. N.; Lei, M.; Bi, K.; Sun, Q. J.; Wang, Z. L. Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy 2019, 62, 513–520.

[115]

Jiang, Y. Y.; Xie, J.; Lu, Z. J.; Hu, J. D.; Hao, A. Z.; Cao, Y. L. Insight into the effect of OH modification on the piezo-photocatalytic hydrogen production activity of SrTiO3. J. Colloid Interface Sci. 2022, 612, 111–120.

[116]

Lin, S.; Li, S. T.; Huang, H. W.; Yu, H.; Zhang, Y. H. Synergetic piezo-photocatalytic hydrogen evolution on Cd x Zn1– x S solid-solution 1D nanorods. Small 2022, 18, 2106420.

[117]

Lee, G. C.; Lyu, L. M.; Hsiao, K. Y.; Huang, Y. S.; Perng, T. P.; Lu, M. Y.; Chen, L. J. Induction of a piezo-potential improves photocatalytic hydrogen production over ZnO/ZnS/MoS2 heterostructures. Nano Energy 2022, 93, 106867.

[118]

Wu, Y. Z.; Yang, D. Y.; Zhang, Y.; Jiao, S. L.; Tang, W. C.; Wang, Z. K.; Wu, N. D.; Wang, Y.; Zhong, W.; Zhang, A. M. et al. Integrated unit-cell-thin MXene and Schottky electric field into piezo-photocatalyst for enhanced photocarrier separation and hydrogen evolution. Chem. Eng. J. 2022, 439, 135640.

[119]

Shi, J.; Starr, M. B.; Xiang, H.; Hara, Y.; Anderson, M. A.; Seo, J. H.; Ma, Z. Q.; Wang, X. D. Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 2011, 11, 5587–5593.

[120]

Yang, W. G.; Yu, Y. H.; Starr, M. B.; Yin, X.; Li, Z. D.; Kvit, A.; Wang, S. F.; Zhao, P.; Wang, X. D. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core-shell nanowire photoanodes. Nano Lett. 2015, 15, 7574–7580.

[121]

Chen, P.; Ni, J. M.; Liang, Y. M.; Yang, B. Q.; Jia, F. F.; Song, S. X. Piezo-photocatalytic reduction of Au(I) by defect-rich MoS2 nanoflowers for efficient gold recovery from a thiosulfate solution. ACS Sustainable Chem. Eng. 2021, 9, 589–598.

[122]

Liu, N. Z.; Wang, R. X.; Gao, S. J.; Zhang, R. F.; Fan, F. R.; Ma, Y. H.; Luo, X. L.; Ding, D.; Wu, W. Z. High-performance piezo-electrocatalytic sensing of ascorbic acid with nanostructured wurtzite zinc oxide. Adv. Mater. 2021, 33, 2105697.

[123]

Liu, N. Z.; Wang, R. X.; Gao, S. J.; Zhang, R. F.; Fan, F. R.; Ma, Y. H.; Luo, X. L.; Ding, D.; Wu, W. Z. Piezo-electrocatalytic oxidation of methanol with UV-ozone treated wurtzite zinc oxide nanostructures. Nano Energy 2023, 109, 108311.

[124]

Lin, E. Z.; Qin, N.; Wu, J.; Yuan, B. W.; Kang, Z. H.; Bao, D. H. BaTiO3 nanosheets and caps grown on TiO2 nanorod arrays as thin-film catalysts for piezocatalytic applications. ACS Appl. Mater. Interfaces 2020, 12, 14005–14015.

[125]

Wang, C.; Zhang, T. N.; Luo, J. L.; Wu, M. L.; Niu, J. F.; Shang, E. X.; Ni, C. S.; Ni, J. P. Synergistic enhancement of piezocatalysis and electrochemical oxidation for the degradation of ciprofloxacin by PbO2 intercalation material. Sep. Purif. Technol. 2022, 297, 121528.

[126]

Lin, E. Z.; Wu, J.; Qin, N.; Yuan, B. W.; Bao, D. H. Silver modified barium titanate as a highly efficient piezocatalyst. Catal. Sci. Technol. 2018, 8, 4788–4796.

[127]

Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646.

[128]

Starr, M. B.; Wang, X. D. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Sci. Rep. 2013, 3, 2160.

[129]

Zhang, Y.; Xie, M. Y.; Adamaki V.; Khanbareh, H.; Bowen, C. R. Control of electro-chemical processes using energy harvesting materials and devices. Chem. Soc. Rev. 2017, 46, 7757–7786.

[130]

Hong, J. H.; Jin, C. H.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 2017, 29, 1606434.

[131]

Kang, Z.; Lin, E. Z.; Qin, N.; Wu, J.; Yuan, B. W.; Bao, D. H. Effect of oxygen vacancies and crystal symmetry on piezocatalytic properties of Bi2WO6 ferroelectric nanosheets for wastewater decontamination. Environ. Sci.: Nano 2021, 8, 1376–1388.

[132]

Ji, M.; Kim, J. H.; Ryu, C. H.; Lee, Y. I. Synthesis of self-modified black BaTiO3– x nanoparticles and effect of oxygen vacancy for the expansion of piezocatalytic application. Nano Energy 2022, 95, 106993.

[133]

Liu, D. M.; Zhang, J. T.; Jin, C. C.; Chen, B. B.; Hu, J.; Zhu, R.; Wang, F. Insight into oxygen-vacancy regulation on piezocatalytic activity of (Bi1/2Na1/2)TiO3 crystallites: Experiments and first-principles calculations. Nano Energy 2022, 95, 106975.

[134]

Wang, Y. C.; Wu, J. M. Effect of controlled oxygen vacancy on H2-production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Adv. Funct. Mater. 2020, 30, 1907619.

[135]

Yu, C. Y.; He, J. J.; Tan, M. X.; Hou, Y. X.; Zeng, H.; Liu, C. B.; Meng, H. M.; Su, Y. J.; Qiao, L. J.; Lookman, T. et al. Selective enhancement of photo-piezocatalytic performance in BaTiO3 via heterovalent ion doping. Adv. Funct. Mater. 2022, 32, 2209365.

[136]

Yu, C.; Lan, S. Y.; Cheng, S. T.; Zeng, L. X.; Zhu, M. S. Ba substituted SrTiO3 induced lattice deformation for enhanced piezocatalytic removal of carbamazepine from water. J. Hazard. Mater. 2022, 424, 127440.

[137]

Yu, C. Y.; Tan, M. X.; Li, Y.; Liu, C. B.; Yin, R. W.; Meng, H. M.; Su, Y. J.; Qiao, L. J.; Bai, Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering. J. Colloid Interface Sci. 2021, 596, 288–296.

[138]

Jin, C. C.; Liu, D. M.; Hu, J.; Wang, Y.; Zhang, Q.; Lv, L.; Zhuge, F. W. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater. Nano Energy 2019, 59, 372–379.

[139]

Zheng, H. J.; Wang, Y. L.; Liu, J. S.; Wang, J.; Yan, K.; Zhu, K. J. Recent advancements in the use of novel piezoelectric materials for piezocatalytic and piezo-photocatalytic applications. Appl. Catal. B: Environ. 2024, 341, 123335.

[140]

Wang, C. Y.; Hu, C.; Chen, F.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Design strategies and effect comparisons toward efficient piezocatalytic system. Nano Energy 2023, 107, 108093.

[141]

Jin, C. C.; Liu, D. M.; Zhang, L. X. An emerging family of piezocatalysts: 2D piezoelectric materials. Small 2023, 19, 2303586.

[142]

Panda, P. K.; Singh, D.; Köhler, M. H. ; de Vargas, D. D.; Wang, Z. L.; Ahuja, R. Contact electrification through interfacial charge transfer: A mechanistic viewpoint on solid-liquid interfaces. Nanoscale Adv. 2022, 4, 884–893.

[143]

Heinicke, G.; Hennig, H. P.; Linke, E.; Steinike, U.; Thiessen, K. P.; Meyer, K. Tribochemistry akademie-verlag, Berlin 1984 495 S., 329 Abb., 106 tab. Preis: 98, -M. Cryst. Res. Technol. 1984, 19, 1424–1424.

[144]

Onodera, T.; Kawasaki, K.; Nakakawaji, T.; Higuchi, Y.; Ozawa, N.; Kurihara, K.; Kubo, M. Tribocatalytic reaction of polytetrafluoroethylene sliding on an aluminum surface. J. Phys. Chem. C 2015, 119, 15954–15962.

[145]

Shirani, A.; Li, Y. Z.; Eryilmaz, O. L.; Berman, D. Tribocatalytically-activated formation of protective friction and wear reducing carbon coatings from alkane environment. Sci. Rep. 2021, 11, 20643.

[146]

Li, P. C.; Wu, J.; Wu, Z.; Jia, Y. M.; Ma, J. P.; Chen, W. P.; Zhang, L. H.; Yang, J.; Liu, Y. S. Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles. Nano Energy 2019, 63, 103832.

[147]

Li, P. C.; Tang, C. Y.; Cheng, L.; Hu, Y. M.; Xiao, X. H.; Chen, W. P. Reduction of CO2 by TiO2 nanoparticles through friction in water. Acta Phys. Sin. 2021, 70, 214601–214607.

[148]

Wu, M. X.; Xu, Y. Y.; He, Q. S.; Sun, P. F.; Weng, X. L.; Dong, X. P. Tribocatalysis of homogeneous material with multi-size granular distribution for degradation of organic pollutants. J. Colloid Interface Sci. 2022, 622, 602–611.

[149]

Sow, M.; Widenor, R.; Kumar, A.; Lee, S. W.; Lacks, D. J.; Sankaran, R. M. Strain-induced reversal of charge transfer in contact electrification. Angew. Chem., Int. Ed. 2012, 124, 2749–2751.

[150]

Li, S. Y.; Nie, J. H.; Shi, Y. X.; Tao, X. L.; Wang, F.; Tian, J. W.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 2020, 32, 2001307.

[151]

Nie, J. H.; Wang, Z. M.; Ren, Z. W.; Li, S. Y.; Chen, X. Y.; Wang, Z. L. Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 2019, 10, 2264.

[152]

Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contact electrification at the liquid-solid interface. Chem. Rev. 2022, 122, 5209–5232.

[153]

Otero, T. F. Electrons create a reaction. Nat. Mater. 2008, 7, 429–430.

[154]

Liu, C. Y.; Bard, A. J. Electrostatic electrochemistry at insulators. Nat. Mater. 2008, 7, 505–509.

[155]

Baytekin, B.; Baytekin, H. T.; Grzybowski, B. A. What really drives chemical reactions on contact charged surfaces. J. Am. Chem. Soc. 2012, 134, 7223–7226.

[156]

Wang, Z. M.; Berbille, A.; Feng, Y. W.; Li, S. T.; Zhu, L. P.; Tang, W.; Wang, Z. L. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 2022, 13, 130.

[157]

Tang, J. M.; Kumar, P. V.; Scott, J. A.; Tang, J. B.; Ghasemian, M. B.; Mousavi, M.; Han, J. L.; Esrafilzadeh, D.; Khoshmanesh, K.; Daeneke, T. et al. Low temperature nano mechano-electrocatalytic CH4 conversion. ACS Nano 2022, 16, 8684–8693.

[158]

Kajdas, C.; Kulczycki, A.; Ozimina, D. A new concept of the mechanism of tribocatalytic reactions induced by mechanical forces. Tribol. Int. 2017, 107, 144–151.

[159]

Zheng, J. F.; Zhang, L. K.; Du, Z. J.; Zhang, C.; Li, H. Q. Tribopolymerization of n-butyl acrylate on the steel-steel rubbing surface. Tribol. Int. 2008, 41, 769–777.

[160]

Kajdas, C.; Lafleche, P. M.; Furey, M. J.; Hellgeth, J. W.; Ward, T. C. A study of tribopolymerisation under fretting contact conditions. Lubr. Sci. 1993, 6, 51–89.

[161]

Li, P. C.; Tang, C. Y.; Xiao, X. H.; Jia, Y. M.; Chen, W. P. Flammable gases produced by TiO2 nanoparticles under magnetic stirring in water. Friction 2022, 10, 1127–1133.

[162]

Wu, Z.; Xu, T. S.; Ruan, L. J.; Guan, J. F.; Huang, S. H.; Dong, X. P.; Li, H. M.; Jia, Y. M. Strong tribocatalytic nitrogen fixation of graphite carbon nitride g-C3N4 through harvesting friction energy. Nanomaterials 2022, 12, 1981.

[163]

Zhao, J. H.; Chen, L.; Luo, W. S.; Li, H. M.; Wu, Z.; Xu, Z. Y.; Zhang, Y. M.; Zhang, H. F.; Yuan, G. L.; Gao, J. et al. Strong tribo-catalysis of zinc oxide nanorods via triboelectrically-harvesting friction energy. Ceram. Int. 2020, 46, 25293–25298.

[164]

Wu, M. X.; Lei, H.; Chen, J. Y.; Dong, X. P. Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. J. Colloid Interface Sci. 2021, 587, 883–890.

[165]

Yang, B.; Chen, H. B.; Guo, X. D.; Wang, L.; Xu, T.; Bian, J. H.; Yang, Y. D.; Liu, Q. D.; Du, Y. P.; Lou, X. J. Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation. J. Mater. Chem. C 2020, 8, 14845–14854.

[166]

Lei, H.; Wu, M. X.; Mo, F.; Ji, S. L.; Dong, X. P.; Wu, Z.; Gao, J.; Yang, Y.; Jia, Y. M. Tribo-catalytic degradation of organic pollutants through bismuth oxyiodate triboelectrically harvesting mechanical energy. Nano Energy 2020, 78, 105290.

[167]

Sun, C. Z.; Guo, X. Y.; Ji, R.; Hu, C. Z.; Liu, L. J.; Fang, L.; Cheng, Z. X.; Luo, N. N. Strong tribocatalytic dye degradation by tungsten bronze Ba4Nd2Fe2Nb8O30. Ceram. Int. 2021, 47, 5038–5043.

[168]

Hu, J. L.; Ma, W.; Pan, Y. Z.; Cheng, Z. H.; Yu, S. G.; Gao, J.; Zhang, Z.; Wan, C. X.; Qiu, C. X. Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface. Chemosphere 2021, 276, 130170.

[169]

Hu, J. L.; Ma, W.; Pan, Y. Z.; Chen, Z.; Zhang, Z.; Wan, C. X.; Sun, Y. W.; Qiu, C. X. Resolving the tribo-catalytic reaction mechanism for biochar regulated Zinc Oxide and its application in protein transformation. J. Colloid Interface Sci. 2022, 607, 1908–1918.

[170]

Cao, J. L.; Jia, Y. M.; Wan, X. M.; Li, B. B.; Zhang, Y. M.; Huang, S. H.; Yang, H. Y.; Yuan, G. L.; Li, G. R.; Cui, X. Z. et al. Strong tribocatalysis of strontium titanate nanofibers through harvesting friction energy for dye decomposition. Ceram. Int. 2022, 48, 9651–9657.

[171]

Cui, X. D.; Li, P. C.; Lei, H.; Tu, C.; Wang, D. L.; Wang, Z.; Chen, W. P. Greatly enhanced tribocatalytic degradation of organic pollutants by TiO2 nanoparticles through efficiently harvesting mechanical energy. Sep. Purif. Technol. 2022, 289, 120814.

[172]

Tang, J. M.; Tang, J. B.; Mayyas, M.; Ghasemian, M. B.; Sun, J.; Rahim, M. A.; Yang, J.; Han, J. L.; Lawes, D. J.; Jalili, R. et al. Liquid-metal-enabled mechanical-energy-induced CO2 conversion. Adv. Mater. 2022, 34, 2105789.

[173]

Chen, B. L.; Xia, Y.; He, R. X.; Sang, H. Q.; Zhang, W. C.; Li, J.; Chen, L. F.; Wang, P.; Guo, S. S. et al. Water-solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets. Proc. Natl. Acad. Sci. USA 2022, 119, e2209056119.

[174]

Berbille, A.; Li, X. F.; Su, Y. S.; Li, S. N.; Zhao, X.; Zhu, L. P.; Wang, Z. L. Mechanism for generating H2O2 at water-solid interface by contact-electrification. Adv. Mater. 2023, 35, 2304387.

[175]

Zhao, J. W.; Zhang, X. T.; Xu, J. J.; Tang, W.; Wang, Z. L.; Fan, F. R. Contact-electro-catalysis for direct synthesis of H2O2 under ambient conditions. Angew. Chem., Int. Ed. 2023, 62, e202300604.

[176]

Wang, X.; Zhang, P.; Li, Z.; Zhang, S. Y.; Ren, P. R.; Xu, J. Q; Hui, Y. X.; Dai, Z. H. Contrasting piezocatalytic and tribocatalytic behavior of BaTiO3. Mater. Sci. Semicond. Process 2024, 172, 108080.

[177]

Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

[178]

Wang, M. Y.; Wang, B.; Huang, F.; Lin, Z. Q. Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities. Angew. Chem., Int. Ed. 2019, 58, 7526–7536.

[179]

Han, G. F.; Li, F.; Chen, Z. W.; Coppex, C.; Kim, S. J.; Noh, H. J.; Fu, Z. P.; Lu, Y. L.; Singh, C. V.; Siahrostami, S. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 2021, 16, 325–330.

[180]

Xie, S. J.; Shen, Z. B.; Deng, J.; Guo, P.; Zhang, Q. H.; Zhang, H. K.; Ma, C.; Jiang, Z.; Cheng, J.; Deng, D. H. et al. Visible light-driven C–H activation and C–C coupling of methanol into ethylene glycol. Nat. Commun. 2018, 9, 1181.

Nano Research Energy
Article number: e9120137
Cite this article:
Liu N, Wang R, Zhao J, et al. Piezoelectricity and triboelectricity enhanced catalysis. Nano Research Energy, 2024, 3: e9120137. https://doi.org/10.26599/NRE.2024.9120137

1070

Views

530

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 03 October 2023
Revised: 22 February 2024
Accepted: 22 March 2024
Published: 05 September 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return