Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The booming of the triboelectric textiles (TENG-Ts) in recent years is accompanied with the e-waste crisis and a huge hidden danger to the natural environment, thus it is highly desired to create the eco-friendly TENG-Ts with degradability for the sustainable development of the smart textiles. In this study, we fabricated a regenerated cellulose-based TENG-T (RC TENG-T) with complete biodegradability through braiding and knitting technology, in which two friction layers were chemically modified by using two silane hydrolysates with opposite electro-affinity. The energy harvesting ability of the RC TENG-T was significantly improved, and the open-circuit voltages (VOC) and short-circuit current (ISC) were enhanced to nearly 9.8 V and 160 nA respectively. The RC TENG-T can be completely bio-degraded under the function of cellulase after 72 h, endowing it with wide application potential as eco-friendly smart wearable devices including microelectronics power source and self-powered sensor with capability of monitoring human physical conditions and the external pressure.
Sharma, S.; Pradhan, G. B.; Jeong, S.; Zhang, S. P.; Song, H.; Park, J. Y. Stretchable and all-directional strain-insensitive electronic glove for robotic skins and human-machine interfacing. ACS Nano 2023, 17, 8355–8366.
Sun, F. Q.; Jiang, H.; Wang, H. Y.; Zhong, Y. H.; Xu, Y. M.; Xing, Y.; Yu, M. H.; Feng, L. W.; Tang, Z.; Liu, J. et al. Soft fiber electronics based on semiconducting polymer. Chem. Rev. 2023, 123, 4693–4763.
Ke, H. Z.; Gao, M. Y.; Li, S. M.; Qi, Q. C.; Zhao, W. C.; Li, X.; Li, S. S.; Kuvondikov, V.; Lv, P. F.; Wei, Q. F.; Ye, L. Advances and future prospects of wearable textile- and fiber-based solar cells. Solar RRL 2023, 7, 2300109.
Qi, L. F.; Kong, L. J.; Wang, Y.; Song, J. H.; Azam, A.; Zhang, Z. T.; Yan, J. Y. Recent progress in application-oriented self-powered microelectronics. Adv. Energy Mater. 2023, 13, 2302699.
Choi, D.; Lee, Y.; Lin, Z. H.; Cho, S.; Kim, M.; Ao, C. K.; Soh, S.; Sohn, C.; Jeong, C. K.; Lee, J. et al. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano 2023, 17, 11087–11219.
Wang, W.; Yu, A. F.; Zhai, J. Y.; Wang, Z. L. Recent progress of functional fiber and textile triboelectric nanogenerators: Towards electricity power generation and intelligent sensing. Adv. Fiber Mater. 2021, 3, 394–412.
Mathew, A. A.; Chandrasekhar, A.; Vivekanandan, S. A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 2021, 80, 105566.
Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.
Zhu, P. H.; Ullah, Z.; Zheng, S. R.; Yang, Z. R.; Yu, S. W.; Zhu, S. P.; Liu, L. W.; He, A. H.; Wang, C. G.; Li, Q. Ultrahigh current output from triboelectric nanogenerators based on UIO-66 materials for electrochemical cathodic protection. Nano Energy 2023, 108, 108195.
Zhao, D. Z.; Zhang, K. J.; Meng, Y.; Li, Z. Y.; Pi, Y. C.; Shi, Y. J.; You, J. C.; Wang, R. K.; Dai, Z. Y.; Zhou, B. P. et al. Untethered triboelectric patch for wearable smart sensing and energy harvesting. Nano Energy 2022, 100, 107500.
Liu, S. L.; Tong, W. S.; Gao, C. X.; Liu, Y. L.; Li, X. N.; Zhang, Y. H. Environmentally friendly natural materials for triboelectric nanogenerators: A review. J. Mater. Chem. A 2023, 11, 9270–9299.
Du, T. L.; Chen, Z. X.; Dong, F. Y.; Cai, H.; Zou, Y. J.; Zhang, Y. W.; Sun, P. T.; Xu, M. Y. Advances in green triboelectric nanogenerators. Adv. Funct. Mater. 2024, 34, 2313794.
Wei, Z. T.; Wang, J. L.; Liu, Y. H.; Yuan, J. X.; Liu, T.; Du, G. L.; Zhu, S. Q. Y.; Nie, S. X. Sustainable triboelectric materials for smart active sensing systems. Adv. Funct. Mater. 2022, 32, 2208277.
Meng, X. J.; Cai, C. C.; Luo, B.; Liu, T.; Shao, Y. Z.; Wang, S. F.; Nie, S. X. Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 2023, 15, 124.
Du, G. L.; Wang, J. L.; Liu, Y. H.; Yuan, J. X.; Liu, T.; Cai, C. C.; Luo, B.; Zhu, S.; Wei, Z. Y.; Wang, S. Q. Y. et al. Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 2023, 10, 2206243.
Shao, Y. Z.; Luo, B.; Liu, T.; Cai, C. C.; Meng, X. J.; Wang, S. F.; Nie, S. X. Harvesting energy from extreme environmental conditions with cellulosic triboelectric materials. Mater. Today 2023, 66, 348–370.
Chen, J.; Guo, H. Y.; Pu, X. J.; Wang, X.; Xi, Y.; Hu, C. G. Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy 2018, 50, 536–543.
Mule, A. R.; Dudem, B.; Patnam, H.; Graham, S. A.; Yu, J. S. Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics. ACS Sustain. Chem. Eng. 2019, 7, 16450–16458.
Yu, Z. C.; Zhu, Z. Y.; Wang, Y. S.; Wang, J. F.; Zhao, Y. H.; Zhang, J. L.; Qin, Y.; Jiang, Q.; He, H. J. Wearable cotton fabric-based single-electrode-mode triboelectric nanogenerator for self-powered human motion monitoring. Cellulose 2023, 30, 5355–5371.
Yang, M. Y.; Tian, X.; Hua, T. Green and recyclable cellulose based TENG for sustainable energy and human-machine interactive system. Chem. Eng. J. 2022, 442, 136150.
Yan, J.; Lv, M. D.; Qin, Y. B.; Wang, B. J.; Kang, W. M.; Li, Y. F.; Yang, G. Triboelectric nanogenerators based on membranes comprised of polyurethane fibers loaded with ethyl cellulose and barium titanate nanoparticles. ACS Appl. Nano Mater. 2023, 6, 5675–5684.
Yu, Z. C.; Zhu, Z. Y.; Zhang, Y. Z.; Li, X. Q.; Liu, X.; Qin, Y.; Zheng, Z. R.; Zhang, L. Y.; He, H. L. Biodegradable and flame-retardant cellulose-based wearable triboelectric nanogenerator for mechanical energy harvesting in firefighting clothing. Carbohydr. Polym. 2024, 334, 122040.
Xu, S. H.; Zhao, H. Q.; Li, Q.; Zhang, R. Y.; Gao, S.; Wang, F.; Li, G. L.; Chen, B. L.; Yu, H. P.; Liu, S. X. et al. Multi-dimensional, transparent and foldable cellulose-based triboelectric nanogenerator for touching password recognition. Nano Energy 2022, 98, 107307.
Song, J. M.; Latif, M.; Jiang, Y. X. Z.; Ounaies, Z.; Kim, J. High-performance flexible triboelectric nanogenerator based on micropatterned allicin-grafted cellulose film. Mater. Today Nano 2024, 26, 100475.
Bai, Z. Q.; Xu, Y. L.; Zhang, Z.; Zhu, J. J.; Gao, C.; Zhang, Y.; Jia, H.; Guo, J. S. Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator. Nano Energy 2020, 75, 104884.
Huang, J. Q.; Zhang, Y.; Yu, H. J.; Han, G. P.; Cheng, W. L. Cellulose-based triboelectric nanogenerator prepared by multi-fluid electrospinning for respiratory protection and self-powered sensing. Actuators 2024, 13, 178.
Zhang, L.; Liao, Y.; Wang, Y. C.; Zhang, S.; Yang, W. Q.; Pan, X. J.; Wang, Z. L. Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 2020, 30, 2001763.
Bai, Z. Q.; Xu, Y. L.; Li, J. C.; Zhu, J. J.; Gao, C.; Zhang, Y.; Wang, J.; Guo, J. S. An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing. ACS Appl. Mater. Interfaces 2020, 12, 42880–42890.
Huang, J. Y.; Hao, Y.; Zhao, M.; Li, W.; Huang, F. L.; Wei, Q. F. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl. Mater. Interfaces 2021, 13, 24774–24784.
Zhang, R. Y.; Dahlström, C.; Zou, H. Y.; Jonzon, J.; Hummelgård, M.; Örtegren, J.; Blomquist, N.; Yang, Y.; Andersson, H.; Olsen, M. et al. Cellulose-based fully green triboelectric nanogenerators with output power density of 300 W·m–2. Adv. Mater. 2020, 32, 2002824.
Zhang, J. T.; Hu, S. M.; Shi, Z. J.; Wang, Y. F.; Lei, Y. Q.; Han, J.; Xiong, Y.; Sun, J.; Zheng, L.; Sun, Q. et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 2021, 89, 106354.
Lou, M. N.; Abdalla, I.; Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl. Mater. Interfaces 2020, 12, 1597–1605.
Lu, C. W.; Wang, X. Y.; Shen, Y.; Xu, S. J.; Huang, C. X.; Wang, C. P.; Xie, H. J.; Wang, J. F.; Yong, Q.; Chu, F. X. Skin-like transparent, high resilience, low hysteresis, fatigue-resistant cellulose-based eutectogel for self-powered e-skin and human-machine interaction. Adv. Funct. Mater. 2023, 34, 2311502.
Wang, T.; Li, S. Y.; Tao, X. L.; Yan, Q.; Wang, X. L.; Chen, Y.; Huang, F. J.; Li, H. X.; Chen, X. Y.; Bian, Z. F. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 2022, 93, 106787.
Wang, R.; Ma, J. M.; Ma, S.; Zhang, Q. R.; Li, N.; Ji, M. M.; Jiao, T. F.; Cao, X. A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chem. Eng. J. 2022, 450, 137985.
Yang, B.; Xiong, Y.; Ma, K.; Liu, S. R.; Tao, X. M. Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat 2020, 2, e12054.
Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.
Cui, X. J.; Li, A.; Zheng, Z. N.; Wu, H. G.; Wang, R. A machine-braided flame-retardant triboelectric yarn/textile for fireproof application. Adv. Mater. Technol. 2023, 8, 2202116.
Nie, S. X.; Fu, Q.; Lin, X. J.; Zhang, C. Y.; Lu, Y. X.; Wang, S. F. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 2021, 404, 126512.
Nie, S. X.; Cai, C. C.; Lin, X. J.; Zhang, C. Y.; Lu, Y. X.; Mo, J. L.; Wang, S. F. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain. Chem. Eng. 2020, 8, 18678–18685.
Dong, K.; Deng, J. N.; Zi, Y. L.; Wang, Y. C.; Xu, C.; Zou, H. Y.; Ding, W. B.; Dai, Y. J.; Gu, B. H.; Sun, B. Z. et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 2017, 29, 1702648.
Wang, J.; Li, X. H.; Zi, Y. L.; Wang, S. H.; Li, Z. L.; Zheng, L.; Yi, F.; Li, S. M.; Wang, Z. L. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 2015, 27, 4830–4836.
Oun, A. A.; Rhim, J. W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohyd. Polym. 2015, 127, 101–109.
Yang, Y.; Zhang, H. L.; Chen, J.; Lee, S.; Hou, T. C.; Wang, Z. L. Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 2013, 6, 1744–1749.
Ma, R. J.; Kang, B.; Cho, S.; Choi, M.; Baik, S. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers. ACS Nano 2015, 9, 10876–10886.
Du, D. H.; Li, P. C.; Ouyang, J. Y. Graphene coated nonwoven fabrics as wearable sensors. J. Mater. Chem. C 2016, 4, 3224–3230.
Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.
Wu, Y. X.; Cui, X. J.; Wu, H. G.; Su, Z. Q. All-polymeric fibrous triboelectric nanogenerator for self-powered intelligent active motions monitoring system. Chem. Eng. J. 2023, 469, 143708.
Fu, K.; Zhou, J.; Wu, H. G.; Su, Z. Q. Fibrous self-powered sensor with high stretchability for physiological information monitoring. Nano Energy 2021, 88, 106258.
Lee, H. J.; Chun, K. Y.; Oh, J. H.; Han, C. S. Wearable triboelectric strain-insensitive pressure sensors based on hierarchical superposition patterns. ACS Sens. 2021, 6, 2411–2418.
Jahan, I.; Moiz, A.; Wang, X. Creating an interconnected PVA nanofibrous membrane on cotton fabrics by dip-coating of PDMS-TMS for versatile protection without compromising comfort. Cellulose 2019, 26, 8179–8190.
Guo, Y. B.; Zhang, X. S.; Wang, Y.; Gong, W.; Zhang, Q. H.; Wang, H. Z.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152–160.
Ye, X. R.; Shi, B. H.; Li, M.; Fan, Q.; Qi, X. J.; Liu, X. H.; Zhao, S. K.; Jiang, L.; Zhang, X. J.; Fu, K. et al. All-textile sensors for boxing punch force and velocity detection. Nano Energy 2022, 97, 107114.
Cai, C. C.; Liu, Y. H.; Li, L. C.; Dong, T. T.; Chen, W.; Zhou, Z.; Li, Q. X.; Sun, Y.; Peng, W. X.; Wang, J. L. et al. Wet-resistant, dustproof, and germproof self-powered lignocellulosic triboelectric filters for respiratory protection, monitoring, and diagnosis. Chem. Eng. J. 2023, 476, 146819.
Jiang, C. M.; Li, X. J.; Ying, Y. B.; Ping, J. F. A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture. Nano Energy 2020, 74, 104863.
Chu, F. J.; Lin, C. W.; I, Y. P.; Wu, C. H.; Chen, D. H. Hydrolysis of bamboo cellulose and cellulase characteristics by Streptomyces griseoaurantiacus ZQBC691. J. Taiwan Inst. Chem. Eng. 2012, 43, 220–225.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.