AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

All-cellulose triboelectric textile with complete biodegradability for eco-friendly smart wearable electronics

Qiru LianJiaxin LiTing LiQiuyu LiYifang LiangHanguang Wu( )Rui Wang
Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

Abstract

The booming of the triboelectric textiles (TENG-Ts) in recent years is accompanied with the e-waste crisis and a huge hidden danger to the natural environment, thus it is highly desired to create the eco-friendly TENG-Ts with degradability for the sustainable development of the smart textiles. In this study, we fabricated a regenerated cellulose-based TENG-T (RC TENG-T) with complete biodegradability through braiding and knitting technology, in which two friction layers were chemically modified by using two silane hydrolysates with opposite electro-affinity. The energy harvesting ability of the RC TENG-T was significantly improved, and the open-circuit voltages (VOC) and short-circuit current (ISC) were enhanced to nearly 9.8 V and 160 nA respectively. The RC TENG-T can be completely bio-degraded under the function of cellulase after 72 h, endowing it with wide application potential as eco-friendly smart wearable devices including microelectronics power source and self-powered sensor with capability of monitoring human physical conditions and the external pressure.

Electronic Supplementary Material

Video
0139_Movie ESM1.mp4
0139_Movie ESM2.mp4
Download File(s)
0139_ESM.pdf (832.4 KB)

References

[1]

Sharma, S.; Pradhan, G. B.; Jeong, S.; Zhang, S. P.; Song, H.; Park, J. Y. Stretchable and all-directional strain-insensitive electronic glove for robotic skins and human-machine interfacing. ACS Nano 2023, 17, 8355–8366.

[2]

Sun, F. Q.; Jiang, H.; Wang, H. Y.; Zhong, Y. H.; Xu, Y. M.; Xing, Y.; Yu, M. H.; Feng, L. W.; Tang, Z.; Liu, J. et al. Soft fiber electronics based on semiconducting polymer. Chem. Rev. 2023, 123, 4693–4763.

[3]

Ke, H. Z.; Gao, M. Y.; Li, S. M.; Qi, Q. C.; Zhao, W. C.; Li, X.; Li, S. S.; Kuvondikov, V.; Lv, P. F.; Wei, Q. F.; Ye, L. Advances and future prospects of wearable textile- and fiber-based solar cells. Solar RRL 2023, 7, 2300109.

[4]

Qi, L. F.; Kong, L. J.; Wang, Y.; Song, J. H.; Azam, A.; Zhang, Z. T.; Yan, J. Y. Recent progress in application-oriented self-powered microelectronics. Adv. Energy Mater. 2023, 13, 2302699.

[5]

Choi, D.; Lee, Y.; Lin, Z. H.; Cho, S.; Kim, M.; Ao, C. K.; Soh, S.; Sohn, C.; Jeong, C. K.; Lee, J. et al. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano 2023, 17, 11087–11219.

[6]

Wang, W.; Yu, A. F.; Zhai, J. Y.; Wang, Z. L. Recent progress of functional fiber and textile triboelectric nanogenerators: Towards electricity power generation and intelligent sensing. Adv. Fiber Mater. 2021, 3, 394–412.

[7]

Mathew, A. A.; Chandrasekhar, A.; Vivekanandan, S. A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 2021, 80, 105566.

[8]

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

[9]

Zhu, P. H.; Ullah, Z.; Zheng, S. R.; Yang, Z. R.; Yu, S. W.; Zhu, S. P.; Liu, L. W.; He, A. H.; Wang, C. G.; Li, Q. Ultrahigh current output from triboelectric nanogenerators based on UIO-66 materials for electrochemical cathodic protection. Nano Energy 2023, 108, 108195.

[10]

Zhao, D. Z.; Zhang, K. J.; Meng, Y.; Li, Z. Y.; Pi, Y. C.; Shi, Y. J.; You, J. C.; Wang, R. K.; Dai, Z. Y.; Zhou, B. P. et al. Untethered triboelectric patch for wearable smart sensing and energy harvesting. Nano Energy 2022, 100, 107500.

[11]

Liu, S. L.; Tong, W. S.; Gao, C. X.; Liu, Y. L.; Li, X. N.; Zhang, Y. H. Environmentally friendly natural materials for triboelectric nanogenerators: A review. J. Mater. Chem. A 2023, 11, 9270–9299.

[12]

Du, T. L.; Chen, Z. X.; Dong, F. Y.; Cai, H.; Zou, Y. J.; Zhang, Y. W.; Sun, P. T.; Xu, M. Y. Advances in green triboelectric nanogenerators. Adv. Funct. Mater. 2024, 34, 2313794.

[13]

Wei, Z. T.; Wang, J. L.; Liu, Y. H.; Yuan, J. X.; Liu, T.; Du, G. L.; Zhu, S. Q. Y.; Nie, S. X. Sustainable triboelectric materials for smart active sensing systems. Adv. Funct. Mater. 2022, 32, 2208277.

[14]

Meng, X. J.; Cai, C. C.; Luo, B.; Liu, T.; Shao, Y. Z.; Wang, S. F.; Nie, S. X. Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 2023, 15, 124.

[15]

Du, G. L.; Wang, J. L.; Liu, Y. H.; Yuan, J. X.; Liu, T.; Cai, C. C.; Luo, B.; Zhu, S.; Wei, Z. Y.; Wang, S. Q. Y. et al. Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 2023, 10, 2206243.

[16]

Shao, Y. Z.; Luo, B.; Liu, T.; Cai, C. C.; Meng, X. J.; Wang, S. F.; Nie, S. X. Harvesting energy from extreme environmental conditions with cellulosic triboelectric materials. Mater. Today 2023, 66, 348–370.

[17]

Chen, J.; Guo, H. Y.; Pu, X. J.; Wang, X.; Xi, Y.; Hu, C. G. Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy 2018, 50, 536–543.

[18]

Mule, A. R.; Dudem, B.; Patnam, H.; Graham, S. A.; Yu, J. S. Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics. ACS Sustain. Chem. Eng. 2019, 7, 16450–16458.

[19]

Yu, Z. C.; Zhu, Z. Y.; Wang, Y. S.; Wang, J. F.; Zhao, Y. H.; Zhang, J. L.; Qin, Y.; Jiang, Q.; He, H. J. Wearable cotton fabric-based single-electrode-mode triboelectric nanogenerator for self-powered human motion monitoring. Cellulose 2023, 30, 5355–5371.

[20]

Yang, M. Y.; Tian, X.; Hua, T. Green and recyclable cellulose based TENG for sustainable energy and human-machine interactive system. Chem. Eng. J. 2022, 442, 136150.

[21]

Yan, J.; Lv, M. D.; Qin, Y. B.; Wang, B. J.; Kang, W. M.; Li, Y. F.; Yang, G. Triboelectric nanogenerators based on membranes comprised of polyurethane fibers loaded with ethyl cellulose and barium titanate nanoparticles. ACS Appl. Nano Mater. 2023, 6, 5675–5684.

[22]

Yu, Z. C.; Zhu, Z. Y.; Zhang, Y. Z.; Li, X. Q.; Liu, X.; Qin, Y.; Zheng, Z. R.; Zhang, L. Y.; He, H. L. Biodegradable and flame-retardant cellulose-based wearable triboelectric nanogenerator for mechanical energy harvesting in firefighting clothing. Carbohydr. Polym. 2024, 334, 122040.

[23]

Xu, S. H.; Zhao, H. Q.; Li, Q.; Zhang, R. Y.; Gao, S.; Wang, F.; Li, G. L.; Chen, B. L.; Yu, H. P.; Liu, S. X. et al. Multi-dimensional, transparent and foldable cellulose-based triboelectric nanogenerator for touching password recognition. Nano Energy 2022, 98, 107307.

[24]

Song, J. M.; Latif, M.; Jiang, Y. X. Z.; Ounaies, Z.; Kim, J. High-performance flexible triboelectric nanogenerator based on micropatterned allicin-grafted cellulose film. Mater. Today Nano 2024, 26, 100475.

[25]

Bai, Z. Q.; Xu, Y. L.; Zhang, Z.; Zhu, J. J.; Gao, C.; Zhang, Y.; Jia, H.; Guo, J. S. Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator. Nano Energy 2020, 75, 104884.

[26]

Huang, J. Q.; Zhang, Y.; Yu, H. J.; Han, G. P.; Cheng, W. L. Cellulose-based triboelectric nanogenerator prepared by multi-fluid electrospinning for respiratory protection and self-powered sensing. Actuators 2024, 13, 178.

[27]

Zhang, L.; Liao, Y.; Wang, Y. C.; Zhang, S.; Yang, W. Q.; Pan, X. J.; Wang, Z. L. Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 2020, 30, 2001763.

[28]

Bai, Z. Q.; Xu, Y. L.; Li, J. C.; Zhu, J. J.; Gao, C.; Zhang, Y.; Wang, J.; Guo, J. S. An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing. ACS Appl. Mater. Interfaces 2020, 12, 42880–42890.

[29]

Huang, J. Y.; Hao, Y.; Zhao, M.; Li, W.; Huang, F. L.; Wei, Q. F. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl. Mater. Interfaces 2021, 13, 24774–24784.

[30]

Zhang, R. Y.; Dahlström, C.; Zou, H. Y.; Jonzon, J.; Hummelgård, M.; Örtegren, J.; Blomquist, N.; Yang, Y.; Andersson, H.; Olsen, M. et al. Cellulose-based fully green triboelectric nanogenerators with output power density of 300 W·m–2. Adv. Mater. 2020, 32, 2002824.

[31]

Zhang, J. T.; Hu, S. M.; Shi, Z. J.; Wang, Y. F.; Lei, Y. Q.; Han, J.; Xiong, Y.; Sun, J.; Zheng, L.; Sun, Q. et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 2021, 89, 106354.

[32]

Lou, M. N.; Abdalla, I.; Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl. Mater. Interfaces 2020, 12, 1597–1605.

[33]

Lu, C. W.; Wang, X. Y.; Shen, Y.; Xu, S. J.; Huang, C. X.; Wang, C. P.; Xie, H. J.; Wang, J. F.; Yong, Q.; Chu, F. X. Skin-like transparent, high resilience, low hysteresis, fatigue-resistant cellulose-based eutectogel for self-powered e-skin and human-machine interaction. Adv. Funct. Mater. 2023, 34, 2311502.

[34]

Wang, T.; Li, S. Y.; Tao, X. L.; Yan, Q.; Wang, X. L.; Chen, Y.; Huang, F. J.; Li, H. X.; Chen, X. Y.; Bian, Z. F. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 2022, 93, 106787.

[35]

Wang, R.; Ma, J. M.; Ma, S.; Zhang, Q. R.; Li, N.; Ji, M. M.; Jiao, T. F.; Cao, X. A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chem. Eng. J. 2022, 450, 137985.

[36]

Yang, B.; Xiong, Y.; Ma, K.; Liu, S. R.; Tao, X. M. Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat 2020, 2, e12054.

[37]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

[38]

Cui, X. J.; Li, A.; Zheng, Z. N.; Wu, H. G.; Wang, R. A machine-braided flame-retardant triboelectric yarn/textile for fireproof application. Adv. Mater. Technol. 2023, 8, 2202116.

[39]

Nie, S. X.; Fu, Q.; Lin, X. J.; Zhang, C. Y.; Lu, Y. X.; Wang, S. F. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 2021, 404, 126512.

[40]

Nie, S. X.; Cai, C. C.; Lin, X. J.; Zhang, C. Y.; Lu, Y. X.; Mo, J. L.; Wang, S. F. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain. Chem. Eng. 2020, 8, 18678–18685.

[41]

Dong, K.; Deng, J. N.; Zi, Y. L.; Wang, Y. C.; Xu, C.; Zou, H. Y.; Ding, W. B.; Dai, Y. J.; Gu, B. H.; Sun, B. Z. et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 2017, 29, 1702648.

[42]

Wang, J.; Li, X. H.; Zi, Y. L.; Wang, S. H.; Li, Z. L.; Zheng, L.; Yi, F.; Li, S. M.; Wang, Z. L. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 2015, 27, 4830–4836.

[43]

Oun, A. A.; Rhim, J. W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohyd. Polym. 2015, 127, 101–109.

[44]

Yang, Y.; Zhang, H. L.; Chen, J.; Lee, S.; Hou, T. C.; Wang, Z. L. Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 2013, 6, 1744–1749.

[45]

Ma, R. J.; Kang, B.; Cho, S.; Choi, M.; Baik, S. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers. ACS Nano 2015, 9, 10876–10886.

[46]

Du, D. H.; Li, P. C.; Ouyang, J. Y. Graphene coated nonwoven fabrics as wearable sensors. J. Mater. Chem. C 2016, 4, 3224–3230.

[47]

Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

[48]

Wu, Y. X.; Cui, X. J.; Wu, H. G.; Su, Z. Q. All-polymeric fibrous triboelectric nanogenerator for self-powered intelligent active motions monitoring system. Chem. Eng. J. 2023, 469, 143708.

[49]

Fu, K.; Zhou, J.; Wu, H. G.; Su, Z. Q. Fibrous self-powered sensor with high stretchability for physiological information monitoring. Nano Energy 2021, 88, 106258.

[50]

Lee, H. J.; Chun, K. Y.; Oh, J. H.; Han, C. S. Wearable triboelectric strain-insensitive pressure sensors based on hierarchical superposition patterns. ACS Sens. 2021, 6, 2411–2418.

[51]

Jahan, I.; Moiz, A.; Wang, X. Creating an interconnected PVA nanofibrous membrane on cotton fabrics by dip-coating of PDMS-TMS for versatile protection without compromising comfort. Cellulose 2019, 26, 8179–8190.

[52]

Guo, Y. B.; Zhang, X. S.; Wang, Y.; Gong, W.; Zhang, Q. H.; Wang, H. Z.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152–160.

[53]

Ye, X. R.; Shi, B. H.; Li, M.; Fan, Q.; Qi, X. J.; Liu, X. H.; Zhao, S. K.; Jiang, L.; Zhang, X. J.; Fu, K. et al. All-textile sensors for boxing punch force and velocity detection. Nano Energy 2022, 97, 107114.

[54]

Cai, C. C.; Liu, Y. H.; Li, L. C.; Dong, T. T.; Chen, W.; Zhou, Z.; Li, Q. X.; Sun, Y.; Peng, W. X.; Wang, J. L. et al. Wet-resistant, dustproof, and germproof self-powered lignocellulosic triboelectric filters for respiratory protection, monitoring, and diagnosis. Chem. Eng. J. 2023, 476, 146819.

[55]

Jiang, C. M.; Li, X. J.; Ying, Y. B.; Ping, J. F. A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture. Nano Energy 2020, 74, 104863.

[56]

Chu, F. J.; Lin, C. W.; I, Y. P.; Wu, C. H.; Chen, D. H. Hydrolysis of bamboo cellulose and cellulase characteristics by Streptomyces griseoaurantiacus ZQBC691. J. Taiwan Inst. Chem. Eng. 2012, 43, 220–225.

Nano Research Energy
Cite this article:
Lian Q, Li J, Li T, et al. All-cellulose triboelectric textile with complete biodegradability for eco-friendly smart wearable electronics. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120139

298

Views

71

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 07 May 2024
Revised: 05 August 2024
Accepted: 02 September 2024
Published: 16 October 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return