AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

3D ordered RuO2/WO3 heterostructure inverse opal arrays for highly-active and stable acidic oxygen evolution reaction

Runlong Jia§Yan Tan§Aoshuang LiYijie WangChuanwei Cheng( )
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

§ Runlong Jia and Yan Tan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Development of highly active and stable acidic oxygen evolution reaction catalyst is very important for efficient water splitting while remains challenging. Herein, we report a highly ordered RuO2/WO3 inverse opals (IOs) catalyst to address the bottleneck problem of see-saw relationship between activity and stability, in which the crystalline and corrosion-resistant WO3 facilitates electron transport and stabilizes RuO2, whereas the lattice mismatch-induced amorphous-dominated RuO2 provides abundant unsaturated coordination sites to enhance the acidic oxygen evolution reaction (OER) activity. Consequently, the RuO2/WO3 IOs demonstrates outstanding acidic OER performance in terms of a low overpotential of 180 mV to reach 10 mA·cm–2, and excellent stability for maintaining 100 hours continuous test. Experimental characterizations and density functional theory calculations reveal that interface coupling between WO3 and RuO2 can enhance the spin polarization of electrons and increase the overlaps of the electronic projected density of states between the Ru d orbitals of active metal and the O p orbitals of oxygen intermediates, facilitating OER pathway to switch from lattice oxygen mechanism to adsorbate evolution mechanism, which significantly decreases the reaction energy barrier of OER process. Meanwhile, the rich oxygen vacancies and WO3 supports in the heterostructures could inhibit the over-oxidation of Ru species, so as to enhance the activity and stability simultaneously.

Electronic Supplementary Material

Download File(s)
0141_ESM.pdf (11.2 MB)

References

[1]

Rong, C. L.; Dastafkan, K.; Wang, Y.; Zhao, C. Breaking the activity and stability bottlenecks of electrocatalysts for oxygen evolution reactions in acids. Adv. Mater. 2023, 35, 2211884.

[2]

Shi, Z. P.; Li, J.; Wang, Y. B.; Liu, S. W.; Zhu, J. B.; Yang, J. H.; Wang, X.; Ni, J.; Jiang, Z.; Zhang, L. J. et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat. Commun. 2023, 14, 843.

[3]

Shen, S. J.; Zhang, H. H.; Song, K.; Wang, Z. P.; Shang, T. T.; Gao, A.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Multi- d electron synergy in LaNi1– x Co x Ru intermetallics boosts electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2024, 63, e202315340.

[4]

Zhang, H. H.; Song, K.; Lin, Z. P.; Wang, Z. P.; Zhang, L. L.; Shen, S. J.; Gu, L.; Zhong, W. W. In situ reconstructed Ru clusters on LaRuSi3 with enhanced electrocatalytic activity for alkaline hydrogen evolution. Adv. Funct. Mater. 2024, 34, 2405897.

[5]

Wang, W.; Wu, Y. X.; Lin, Y. X.; Yao, J. X.; Wu, X. S.; Wu, C. Q.; Zuo, X. Q.; Yang, Q.; Ge, B. H.; Yang, L. et al. Confining zero-valentplatinum single atoms in α-MoC1– x for pH-universal hydrogen evolution reaction. Adv. Funct. Mater. 2021, 32, 2108464.

[6]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[7]

An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

[8]

Gao, G. L.; Sun, Z. X.; Chen, X. L.; Zhu, G.; Sun, B. W.; Yamauchi, Y.; Liu, S. D. Recent advances in Ru/Ir-based electrocatalysts for acidic oxygen evolution reaction. Appl. Catal. B: Environ. 2024, 343, 123584.

[9]

Chen, Y. P.; Shang, C. Y.; Xiao, X.; Guo, W. H.; Xu, Q. Recent progress of electrocatalysts for acidic oxygen evolution reaction. Coord. Chem. Rev. 2024, 508, 215758.

[10]

Deng, L. M.; Hung, S. F.; Lin, Z. Y.; Zhang, Y.; Zhang, C. C.; Hao, Y. X.; Liu, S. Y.; Kuo, C. H.; Chen, H. Y.; Peng, J. et al. Valence oscillation of Ru active sites for efficient and robust acidic water oxidation. Adv. Mater. 2023, 35, 2305939.

[11]

Qin, R.; Chen, G. Z.; Feng, X. T.; Weng, J. N.; Han, Y. H. Ru/Ir-based electrocatalysts for oxygen evolution reaction in acidic conditions: From mechanisms, optimizations to challenges. Adv. Sci. 2024, 11, 2309364.

[12]

Lei, Z. W.; Wang, T. Y.; Zhao, B. T.; Cai, W. B.; Liu, Y.; Jiao, S. H.; Li, Q.; Cao, R. G.; Liu, M. L. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478.

[13]

Lin, Y. C.; Dong, Y.; Wang, X. Z.; Chen, L. Electrocatalysts for the oxygen evolution reaction in acidic media. Adv. Mater. 2023, 35, 2210565.

[14]

Shi, Y. Y.; Wu, H.; Chang, J. W.; Tang, Z. Y.; Lu, S. Y. Progress on the mechanisms of Ru-based electrocatalysts for the oxygen evolution reaction in acidic media. J. Energy Chem. 2023, 85, 220–238.

[15]

Zhang, J. J.; Xu, L. L.; Yang, X. X.; Guo, S.; Zhang, Y. F.; Zhao, Y.; Wu, G.; Li, G. Amorphous MnRuO x containing microcrystalline for enhanced acidic oxygen-evolution activity and stability. Angew. Chem., Int. Ed. 2024, 63, e202405641

[16]

Chen, G. Z.; Lu, R. H.; Ma, C.; Zhang, X. W.; Wang, Z. Y.; Xiong, Y.; Han, Y. H. A long-range disordering RuO2 catalyst for highly efficient acidic oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2024, e202411603.

[17]

Liu, Y. D.; Sakthivel, T.; Hu, F.; Tian, Y. H.; Wu, D. S.; Ang, E. H.; Liu, H.; Guo, S. W.; Peng, S. J.; Dai, Z. F. Enhancing the d/p-band center proximity with amorphous-crystalline interface coupling for boosted pH-robust water electrolysis. Adv. Energy Mater. 2023, 13, 2203797.

[18]

Shang, F. F.; He, H. J.; Lin, Y.; An, B.; Cai, H. R.; Li, X. Q.; Wang, W. T.; Liang, C.; Yang, S. C.; Wang, B. Hetero-nanojunction armored with carbon layer for boosting water oxidation over RuO2 in acid. Inorg. Chem. Front. 2024, 11, 5265–5272.

[19]

Wan, T. T.; Wang, H. Y.; Wu, L. L.; Wu, C. C.; Zhang, Z. S.; Liu, S. M.; Fu, J.; Li, J. D. Niobium-doped conductive TiO–TiO2 heterostructure supported bifunctional catalyst for efficient and stable zinc-air batteries. J. Colloid Interface Sci. 2023, 651, 27–35.

[20]

Zhang, Y. T.; Zhang, Z.; Jiang, G. P.; Mamaghani, A. H.; Sy, S.; Gao, R.; Jiang, Y.; Deng, Y. P.; Bai, Z. Y.; Yang, L. et al. Three-dimensionally ordered mesoporous Co3O4 decorated with Mg as bifunctional oxygen electrocatalysts for high-performance zinc-air batteries. Nano Energy 2022, 100, 107425

[21]

Pan, Q.; Li, A. S.; Zhang, Y. L.; Yang, Y. P.; Cheng, C. W. Rational design of 3D hierarchical ternary SnO2/TiO2/BiVO4 arrays photoanode toward efficient photoelectrochemical performance. Adv. Sci. 2020, 7, 1902235

[22]

Zhang, H. F.; Cheng, C. W. Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance. ACS Energy Lett. 2017, 2, 813–821.

[23]

Cheng, C. W.; Zhang, H. F.; Ren, W. N.; Dong, W. J.; Sun, Y. Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy 2013, 2, 779–786.

[24]

Pan, Q.; Zhang, H. F.; Yang, Y. P.; Cheng, C. W. 3D brochosomes-like TiO2/WO3 /BiVO4 arrays as photoanode for photoelectrochemical hydrogen production. Small 2019, 15, 1900924.

[25]

Cheng, C. W.; Karuturi, S. K.; Liu, L. J.; Liu, J. P.; Li, H. X.; Su, L. T.; Tok, A. I. Y.; Fan, H. J. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small 2012, 8, 37–42.

[26]

Cai, G. F.; Darmawan, P.; Cheng, X.; Lee, P. S. Inkjet printed large area multifunctional smart window. Adv. Energy Mater. 2017, 7, 1602598.

[27]

Liu, N.; Lu, Y. K.; Hao, H. Y.; Bao, W. J.; Sun, F. Y.; Zhang, C.; Yan, D. W.; Yue, C. L. Ring-shaped cavity anchor Pt to derive Pt/WO3– x heterointerfaces for efficient hydrogen evolution in acidic water and seawater. J. Colloid Interface Sci. 2024, 676, 918–926.

[28]

Wei, J. K.; Wang, J.; Guo, W.; Tang, H. L.; Li, J. S. Tailoring the acidity of WO3/ZrO2 to regulate the energy barrier of water dissociation in alkaline hydrogen evolution. Chem. Eng. J. 2023, 460, 141783.

[29]

Wang, Y.; Yang, R.; Ding, Y. J.; Zhang, B.; Li, H.; Bai, B.; Li, M. R.; Cui, Y.; Xiao, J. P.; Wu, Z. S. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat. Commun. 2023, 14, 1412.

[30]

Niu, Z. Q.; Lu, Z. K.; Qiao, Z. L.; Wang, S. T.; Cao, X. H.; Chen, X. D.; Yun, J.; Zheng, L. R.; Cao, D. P. Robust Ru–VO2 bifunctional catalysts for all-pH overall water splitting. Adv. Mater. 2024, 36, 2310690.

[31]

Cheng, Z. Y.; Yang, Y.; Wang, P. C.; Wang, P. C.; Yang, J. H.; Wang, D. D.; Chen, Q. W. Optimizing hydrogen and hydroxyl adsorption over Ru/WO2.9 metal/metalloid heterostructure electrocatalysts for highly efficient and stable hydrogen oxidation reactions in alkaline media. Small 2024, 20, 2307780.

[32]

Li, A. S.; Tan, Y.; Wang, Y. J.; Cheng, C. W. Three-dimensional ordered macroporous amorphous WO3 arrays for zinc-based electrochromic device with large light modulation and fast switching. Adv. Mater. Technol 2024, 9, 2301886.

[33]

Huang, K.; Lin, C. L.; Yu, G. Q.; Du, P.; Xie, X. Y.; He, X.; Zheng, Z. C.; Sun, N.; Tang, H. L.; Li, X. B. et al. Ru/Se–RuO2 composites via controlled selenization strategy for enhanced acidic oxygen evolution. Adv. Funct. Mater. 2023, 33, 2211102.

[34]

Guan, Z. Y.; Li, J. K.; Li, S. Y.; Wang, K. Y.; Lei, L. F.; Wang, Y. X.; Zhuang, L. Z.; Xu, Z. Multivalence-state tungsten species facilitated iridium loading for robust acidic water oxidation. Small Methods 2024, 8, 2301419.

[35]

Yuan, C. Z.; Wang, S.; San Hui, K.; Wang, K. X.; Li, J. F.; Gao, H. X.; Zha, C.; Zhang, X. M.; Dinh, D. A.; Wu, X. L. et al. In situ immobilizing atomically dispersed Ru on oxygen-defective Co3O4 for efficient oxygen evolution. ACS Catal. 2023, 13, 2462–2471.

[36]

Wang, X. F.; Jang, H.; Liu, S. G.; Li, Z. J.; Zhao, X. H.; Chen, Y. F.; Kim, M. G.; Qin, Q.; Liu, X. E. Enhancing the catalytic kinetics and stability of Ru sites for acidic water oxidation by forming brønsted acid sites in tungsten oxide matrix. Adv. Energy Mater. 2023, 13, 2301673.

[37]

Hao, S. Y.; Liu, M.; Pan, J. J.; Liu, X. N.; Tan, X. L.; Xu, N.; He, Y.; Lei, L. C.; Zhang, X. W. Dopants fixation of ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 2020, 11, 5368.

[38]

Zhang, D. F.; Li, M. N.; Yong, X.; Song, H. Q.; Waterhouse, G. I. N.; Yi, Y. F.; Xue, B. J.; Zhang, D. L.; Liu, B. Z.; Lu, S. Y. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 2023, 14, 2517.

[39]

Wang, K. X.; Wang, Y. L.; Yang, B.; Li, Z. J.; Qin, X. T.; Zhang, Q. H.; Lei, L. C.; Qiu, M.; Wu, G.; Hou, Y. Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ. Sci. 2022, 15, 2356–2365.

[40]

Qin, Y.; Niu, X. P.; Zhao, R.; Sun, J. Y.; Xu, Z. H.; Guo, Z.; Liu, D. N.; Guo, L. L.; Liu, C.; Zhang, J. F. et al. Manganese as electron reservoir stabilized RuMnO x @RuO x with enhanced activity and robust durability for acidic water oxidation. ACS Catal. 2024, 14, 12970–12981.

[41]

Yu, H. Z.; Zhu, S. Q.; Hao, Y. X.; Chang, Y. M.; Li, L. L.; Ma, J.; Chen, H. Y.; Shao, M. H.; Peng, S. J. Modulating local interfacial bonding environment of heterostructures for energy-saving hydrogen production at high current densities. Adv. Funct. Mater. 2023, 33, 2212811.

[42]

Wang, D. R.; Deng, Y. P.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Hu, Y. F.; Shakouri, M.; Wang, X.; Chen, Z. W. Defect engineering on three-dimensionally ordered macroporous phosphorus doped Co3O4– δ microspheres as an efficient bifunctional electrocatalyst for Zn-air batteries. Energy Storage Mater. 2021, 41, 427–435.

[43]

Bai, Y. K.; Liu, Z. J.; Wang, X. X.; Zhang, Z. X.; Liu, K.; Gao, C. B. Tailoring Ni–Fe–B electronic effects in layered double hydroxides for enhanced oxygen evolution activity. Small 2024, 2407564.

[44]

Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeO x as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

[45]

Huang, B.; Cui, Y. Q.; Liu, X. W.; Zheng, C. X.; Wang, H.; Guan, L. H. Dense-packed RuO2 nanorods with in situ generated metal vacancies loaded on SnO2 nanocubes for proton exchange membrane water electrolyzer with ultra-low noble metal loading. Small 2023, 19, 2301516.

[46]

Wu, Y. Z.; Zhao, Y. Y.; Zhai, P. L.; Wang, C.; Gao, J. F.; Sun, L. C.; Hou, J. G. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni–Fe oxyhydroxides nanoarrays for electrochemical water oxidation. Adv. Mater. 2022, 34, 2202523.

[47]

Hou, Z. Q.; Cui, C. H.; Yang, Y. N.; Zhang, T. Electrochemical oxidation encapsulated Ru clusters enable robust durability for efficient oxygen evolution. Small 2023, 19, 2207170.

[48]

Qin, Y. Z.; Liu, Y.; Zhang, Y. Z.; Gu, Y. D.; Lian, Y. B.; Su, Y. H.; Hu, J. P.; Zhao, X. H.; Peng, Y.; Feng, K. et al. Ru-substituted MnO2 for accelerated water oxidation: The feedback of strain-induced and polymorph-dependent structural changes to the catalytic activity and mechanism. ACS Catal. 2023, 13, 256–266.

[49]

Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In- situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012–1023.

[50]

Tang, L. N.; Yang, Y. L.; Guo, H. Q.; Wang, Y.; Wang, M. J.; Liu, Z. Q.; Yang, G. M.; Fu, X. Z.; Luo, Y.; Jiang, C. X. et al. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Adv. Funct. Mater. 2022, 32, 2112157.

[51]

Liu, L.; Cao, J. M.; Hu, S. Q.; Liu, T. H.; Xu, C.; Fu, W. S.; Ma, X. G.; Yang, X. H. Antagonism effect of residual S triggers the dual-path mechanism for water oxidation. J. Energy Chem. 2024, 93, 568–579.

[52]

Ye, P. C.; Fang, K. Q.; Wang, H. Y.; Wang, Y. H.; Huang, H.; Mo, C. B.; Ning, J. Q.; Hu, Y. Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation. Nat. Commun. 2024, 15, 1012.

[53]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

[54]

He, Z. Y.; Zhang, J.; Gong, Z. H.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W.; Zhao, S. J.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.

[55]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[56]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[57]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[58]

Zhang, J. H.; Fu, X. B.; Xia, F. J.; Zhang, W. Q.; Ma, D. S.; Zhou, Y.; Peng, H.; Wu, J. S.; Gong, X. Q.; Wang, D. et al. Core-shell nanostructured Ru@Ir–O electrocatalysts for superb oxygen evolution in acid. Small 2022, 18, 2108031.

[59]

Wu, Z. X.; Wang, Y. L.; Liu, D. Z.; Zhou, B. W.; Yang, P. F.; Liu, R. Z.; Xiao, W. P.; Ma, T. Y.; Wang, J. S.; Wang, L. Hexagonal defect-rich MnO x /RuO2 with abundant heterointerface to modulate electronic structure for acidic oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2307010.

[60]

Wu, Z. Y.; Chen, F. Y.; Li, B. Y.; Yu, S. W.; Finfrock, Y. Z.; Meira, D. M.; Yan, Q. Q.; Zhu, P.; Chen, M. X.; Song, T. W. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2023, 22, 100–108.

[61]

Long, X.; Zhao, B.; Zhao, Q. Q.; Wu, X. X.; Zhu, M. N.; Feng, R. F.; Shakouri, M.; Zhang, Y.; Xiao, X. X.; Zhang, J. J. et al. Ru–RuO2 nano-heterostructures stabilized by the sacrificing oxidation strategy of Mn3O4 substrate for boosting acidic oxygen evolution reaction. Appl. Catal. B: Environ. 2024, 343, 123559.

[62]

Qin, Y.; Cao, B.; Zhou, X. Y.; Xiao, Z. R.; Zhou, H. X.; Zhao, Z. Y.; Weng, Y. B.; Lv, J. S.; Liu, Y.; He, Y. B. et al. Orthorhombic (Ru, Mn)2O3: A superior electrocatalyst for acidic oxygen evolution reaction. Nano Energy 2023, 115, 108727.

[63]

Hao, Y. X.; Hung, S. F.; Tian, C.; Wang, L. Q.; Chen, Y. Y.; Zhao, S.; Peng, K. S.; Zhang, C. C.; Zhang, Y.; Kuo, C. H. et al. Polarized ultrathin BN induced dynamic electron interactions for enhancing acidic oxygen evolution. Angew. Chem. 2024, 136, e202402018.

[64]

Hao, Y. X.; Hung, S. F.; Zeng, W. J.; Wang, Y.; Zhang, C. C.; Kuo, C. H.; Wang, L. Q.; Zhao, S.; Zhang, Y.; Chen, H. Y. et al. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 2023, 145, 23659–23669.

[65]

Cui, X. J.; Ren, P. J.; Ma, C.; Zhao, J.; Chen, R. X.; Chen, S. M.; Rajan, N. P.; Li, H. B.; Yu, L.; Tian, Z. Q. et al. Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 2020, 32, 1908126.

[66]

He, J.; Zhou, X.; Xu, P.; Sun, J. M. Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. Adv. Energy Mater. 2021, 11, 2102883.

[67]

Li, L.; Zhang, G. W.; Xu, J. W.; He, H. J.; Wang, B.; Yang, Z. M.; Yang, S. C. Optimizing the electronic structure of ruthenium oxide by neodymium doping for enhanced acidic oxygen evolution catalysis. Adv. Funct. Mater. 2023, 33, 2213304.

[68]

Zhu, W. X.; Song, X. C.; Liao, F.; Huang, H.; Shao, Q.; Feng, K.; Zhou, Y. J.; Ma, M. J.; Wu, J.; Yang, H. et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide. Nat. Commun. 2023, 14, 5365.

[69]

Qin, K. Y.; Yu, H.; Zhu, W. X.; Zhou, Y. J.; Guo, Z. Y.; Shao, Q.; Wu, Y. B.; Wang, X. P.; Li, Y. Y.; Ji, Y. J. et al. 1D monoclinic IrxRu1– x O2 solid solution with Ru-enhanced electrocatalytic activity for acidic oxygen evolution reaction. Adv. Funct. Mater. 2024, 2402226.

[70]

Liu, C. X.; Jiang, Y. B.; Wang, T.; Li, Q. S.; Liu, Y. Z. Nano Si-doped ruthenium oxide particles from caged precursors for high-performance acidic oxygen evolution. Adv. Sci. 2023, 10, 2207429.

Nano Research Energy
Cite this article:
Jia R, Tan Y, Li A, et al. 3D ordered RuO2/WO3 heterostructure inverse opal arrays for highly-active and stable acidic oxygen evolution reaction. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120141

476

Views

156

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 24 September 2024
Revised: 29 October 2024
Accepted: 30 October 2024
Published: 14 November 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return